Improved Design & Construction Methodology for Urban Local Roads in Flood Prone Areas

Scott Young, National Technical Manager

BE(Hons), MPavtTech, RPEng(Civil), RPEQ, RPEV

Stabilised Pavements of Australia

Australian Pavement Recycling and Stabilisation Conference

Designing for Reuse and Resilience

Pullman King George Square, Brisbane • 7th August 2024

Co - Authors

Zach Fryer

- BE (Civil)
- Construction Coordinator
- Byron Shire Council

Andrew Middleton

- ADip (Civil)
- Regional Manager, Northern NSW
- Stabilised Pavements of Australia

Scope

- Introducing River Terrace
 - Site Condition and Constraints
- Design
 - Rehabilitation Pavement Design
 - Construction Process
 - Mix Design
- Construction Phase and Post Construction Testing
- Project Economics
- Conclusion

River Terrace

Pullman King George Square, Brisbane • 7th August 2024

Site Condition & Constraints



Australian Pavement Recycling and Stabilisation Conference

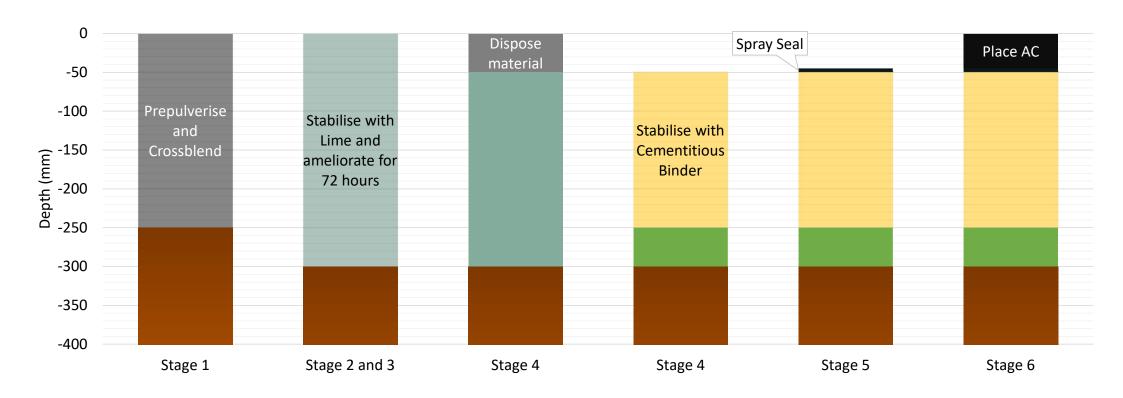
Rehabilitation Pavement Design

Layer	Details			
Spray Seal	Double/Double (14mm/7mm aggregate)			
Priming Treatment	Cutback primer, AMC0 or AMC00			
Base Course - DGB20	150 mm - CBR 35%			
Subbase Course - DGS20 or DGS40	300 mm - CBR 25%			
Natural Subgrade - Silty CLAY (CH)	CBR 4%			

Layer	Details			
Spray Seal	Double/Double (14mm/7mm aggregate)*			
Priming Treatment	Cutback primer, AMC0 or AMC00			
Base Course - DGB20	150 mm - CBR 35%			
Subbase Course - DGS20 or DGS40	150 mm - CBR 25%			
Lime Stabilised Subgrade Insitu – 5% Lime Content	200 mm - CBR 10%			
Natural Subgrade – Silty CLAY (CH)	CBR 4%			

50mm AC14 C450 Wearing Course
14/7mm C170/S45R Sprayed Seal

200mm Lightly Bound Basecourse


50mm Residual Lime Treated Material
Subgrade

Australian Pavement Recycling and Stabilisation Conference

Recommended Construction Process

Mix Design

	Application Rate,	Field Target Spread Rate, kg/m²
Hydrated Lime (1st Treatment)	3.0	18.0
60/40 Slag/Lime (2 nd Treatment	4.0	15.5

- a) Conduct Lime Demand (LD) test on subgrade clay.
- b) Adopt lime content of LD+1%.
- c) Breakdown all samples together to ensure accurate proportions of the bituminous wearing course, base gravel and subgrade are contained in the mixture. This was to reflect the initial prepulverising and crossblending phase.
- d) Determine OMC/MDD with LD+1% hydrated lime.
- e) Mix hydrated lime at LD+1% at OMC.
- f) Prepare UCS cylinders.
- g) Cure the samples whilst in the cylinders at 25 degrees for no less than 72 hours.
- h) Break down the samples to reflect the second stabilisation mixing process.
- i) Determine OMC/MDD with 60/40 slag/lime.
- j) Undertake UCS testing at 3%, 4% and 5% 60/40 slag/lime.

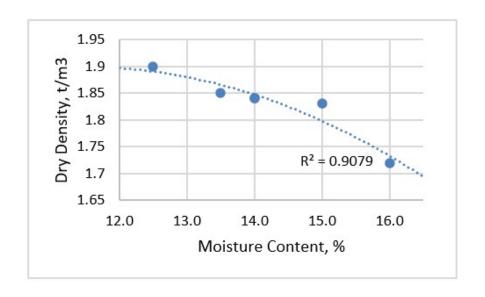
Date	Activity	Duration
10 April 2024	Prepulverisation and crossblending	1 day
12 April 2024	300mm lime stabilisation	1 day
13-15 April 2024	Amelioration	3 days
16 April 2024	Removal of 50mm of lime treated material	1 day
17 April 2024	Slag/Lime strengthening stabilisation	1 day
26 April 2024	Placement of SAMI seal	1 day
30 April 2024	Placement of 50mm AC wearing course	1 day

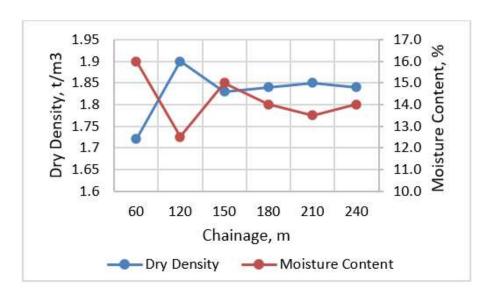
Australian Pavement Recycling and Stabilisation Conference

Australian Pavement Recycling and Stabilisation Conference

Australian Pavement Recycling and Stabilisation Conference

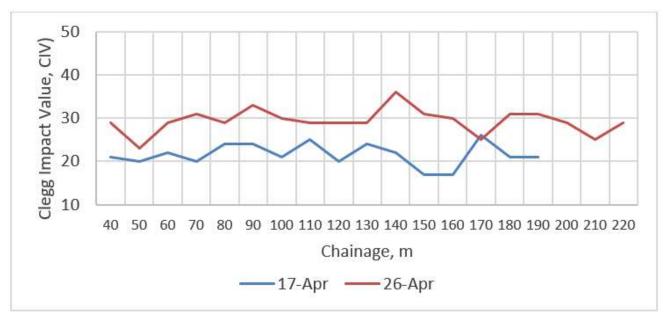
Post Construction Testing



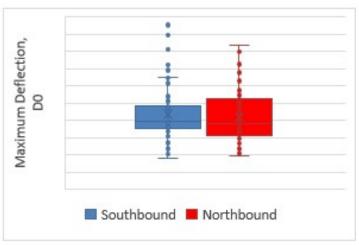


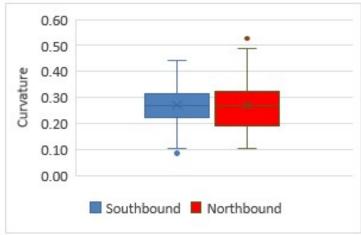
Australian Pavement Recycling and Stabilisation Conference

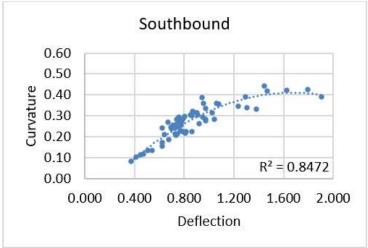
Post Construction Testing

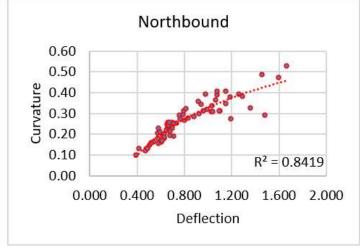


Post Construction Testing









Post Construction Testing

Australian Pavement Recycling and Stabilisation Conference

Designing for Reuse and Resilience

Pullman King George Square, Brisbane • 7th August 2024

Project Economics

ltem	Qty	Unit	Rate	Total Cost	% of total
Project management	1	item	\$ 19,191.67	\$ 19,191.67	6%
Geotechnical investigations/designs	1	item	\$ 16,080.00	\$ 16,080.00	5%
Site establishment/prelims	10	days	\$ 3,131.51	\$ 31,315.10	9%
Traffic control	12	days	\$ 1,604.89	\$ 19,258.68	6%
Initial seal	3720	m2	\$ 6.14	\$ 22,840.80	7%
40mm AC10 Asphalt	3185	m2	\$ 32.57	\$ 103,735.50	31%
Pavement stabilisation	2475	m2	\$ 39.11	\$ 96,797.25	29%
Earthworks/drainage	1	item	\$ 21,721.97	\$ 21,721.97	7%
	d	200	Total	\$ 330,940.90	

Conclusion

- River Tce challenges not unique
 - Height restrictions
 - Flood zone
 - Thin pavements
 - Variable materials
 - Wet construction period
- Crossblending very important
- Double stabilisation strategy
 - 3.0% Hydrated Lime, then
 - 4.0% 60/40 Slag/lime

