Foamed Bitumen Recycling Pacific Freight Terminal – Roadway F Western Australia - Kewdale

Damien Edwards – Technical & Innovation Manager *HIWAY*

PROJECT ROADMAP

Australian Pavement Recycling and Stabilisation Conference

Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Foamed Bitumen Recycling

AfPA – Design Supplement used for the 1st time

RISK MANAGEMENT

FULTON HOGAN

Safety Cost Timing Environmental Contractual Pavement Design

HIWAY

Safety Timing Environmental Contractual Construction Mix Design

FULTON HOGAN

Safety Cost Timing Environmental Contractual Pavement Design

HIWAY

Safety Timing Environmental Contractual Construction Mix Design

FOAMED BITUMEN DESIGN PROCESS

PLANNING

Area to be investigated

- Roadway F
- 850m length
- 10m wide
- Site Access
- Active Site

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

GEOTECHNICAL INVESTIGATION PROCESS

PLANNING

Area to be investigated

- Roadway F
- 850m length
- 10m wide
- Site Access
- Active Site

FIELD SAMPLING

Sampling

- 10 Test Pits (Depth to 600mm)
- 9 Bore Holes (Depth to 1.5m)
- Consistency of materials

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

TESTING DATA

Lab Testing

LAB

- Detailed laboratory testing program
- High workload had to share between two labs
 - Valuable information

- Interrogation
 - PSD
- Atterbergs
- Soaked CBR
- Summarised to give guidance on material profiles

FOR FOAMED BITUMEN RECYCLING

EXISTING PROFILE

- Existing pavement
- Varying thickness of Asphalt
- Varying thickness of limestone
- Sand Subgrade

SUBGRADE

- Subgrade very consistent
- Classified as a Sand
- Angular shape
- Typical for Western Australia
- Fine grading
- Consistent grading

GRANULAR

- Granular material Limestone
- Assessed against MRWA grading specification for limestone material
- Gradings not within specified limits

DES

0.12

FULTON HOGAN PORTPHALT

Reclaim material between FSL 00 and minus 350mm -Sandy Subgrade material below 350 350 351 350mm

Reclaim material between FSL 00 and minus 500mm - Sandy Subgrade material below 500mm

MIX RESULTS

- Used a combination of primary and secondary binder contents to achieve 2000MPa modulus.
- 3-day modulus not achieved revise gradings and blends.

Source Material	Bitumen Content %	Cement Content %	3-day cured modulus (MPa)	3-day cured and soaked modulus (MPa)	Average retained 3-day cured modulus (%)
TP8 (Subbase)	3	1.5	1800	1100	61
TP2 (Base)	3	1.5	2800	1650	59
TP2 (Base)	3.5	1.0	1450	850	59

NEXT STEP

- Included imported granular material
 - Section 1 25%
 - Section 2 20%
- Assessed gradings
- Binder Selection
 - 3.0% Bitumen
 - 1.5% Cement
- 4 Blends Selected

FINAL MIX DESIGN RESULTS

Mix Design Reference	Location	Bitumen/ Cement content %	Blend Composition	Initial Modulus (MPa)	3-day cured modulus (MPa)	3-day cured soaked modulus (MPa)	7-day cured modulus (MPa)	7-day cured soaked modulus (MPa)	3-day UCS (MPa)	7-day UCS (MPa)	Selected Construction
Package 1	TP8	3.0/1.5	80% TP8 Base + 20% Imported Granular	1400	3500*	2250	4250	2500	0.6	0.8	Selected
Package 2	TP8	3.0/1.5	60% TP8 Base + 40% Imported Granular	2000	3750	2250	5000	3750	0.9	1.1	Not Selected
Package 3	TP2	3.0/1.5	50% TP2 Base + 50% TP2 Subgrade	1300	2500	1250	3500	1750	0.2	0.3	Not Selected
Package 4	TP2	3.0/1.5	25% Imported Granular + 25% TP2 Base +50% TP2 Subgrade	-	3000*	1750	4000	2000	0.6	0.7	Selected

*Achieve Design Modulus of 2000MPa @ 3 Days Cured

FOAMED BITUMEN RECYCLING CONSTRUCTION

CONSTRUCTION PROCESS

- Prepared detailed ITP's for construction.
- PFT Client versed in stabilisation and impressed with all works undertaken.
- Works carried out in 4 lots.
- Works completed on time and within budget.
- Client saw this project as successful due to:
 - Collaboration in design.
 - Construction was completed with no incidents and high-quality work.
 - Limited the amount of material sent to spoil.
 - Limited the imported amount of quarried material.
- Achieved FBR modulus during construction for lots.

CONSTRUCTION MODULUS RESULTS

 Constructed samples to be tested at:

3 Day

7 Day

14 Day

28 Day

DRY

Indirect Tensile Modulus - Dry 4500 4000 3500 3000 2500 ЧРа 2000 1500 1000 MODULUS 500 3 Day 7 Day 14 Day 28 Day Lot 2 Lot 3 Lot 4 Min. Design Modulus

CONSTRUCTION MODULUS RESULTS

- Constructed samples to be tested at:
 - 3 Day
 - 7 Day
 - 14 Day
 - 28 Day

WET MODULUS

PROJECT BENEFITS

MATERIAL SAVINGS

Section 1 - CH 000 - 350

- Remove in situ pavement material and replace with 25% imported granular material.
- Data used to calculate tonnages as reported on laboratory test reports.
 - Insitu MDD = 1.97t/m³
 - Imported Granular Material = 2.1t/m³

FBR Treatment Depth (350mm)	Material to be Excavated for 25% Replacement (85mm)	Imported Material for 25% Replacement (85mm)	Import Granular Tonnages saved (265mm depth)	CO ₂ e Saved (kg)	
350mm	586 tonnes	624 tonnes	1948 tonnes	60,712	

MATERIAL SAVINGS

Section 2 - CH 350 - 850

- Remove in situ pavement material and replace with 20% imported granular material.
- Data used to calculate tonnages as reported on laboratory test reports.
 - Insitu MDD = 1.77t/m³
 - Imported Granular Material = 2.1t/m³

FBR Treatment Depth (350mm)	Material to be Excavated for 20% Replacement (70mm)	Imported Material for 20% Replacement (70mm)	Import Granular Tonnages saved (280mm depth)	CO ₂ e Saved (kg)	
350mm	620 tonnes	735 tonnes	2940 tonnes	86,733	

CARBON SAVINGS

Based on:

- Comparison of remove all poorly graded material and replace vs. remove 25% and 20% material to adjust grading
- Transport cut to waste 35km to dump site
- Import new granular material 30km from quarry
- For the purposes of this exercise – FBR emissions excluded as these are very close to like-for-like

ONGOING PERFORMANCE

- FBR provided a solid working platform to construct asphalt layers.
- Pavement been in operation for 1 year with no defects observed.
- No remediation works required during the defects liability phase.

THANK YOU

