Comments on the Australian Structural Pavement Design Procedure for Lightly Bound Cemented Materials

Ian van Wijk Senior Principal Pavement Engineer

FSG Geotechnics

Australian Pavement Recycling and Stabilisation Conference

Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Contents

- 1. Aim of the presentation
- 2. Definitions
- 3. Use and design
- 4. Design procedures
- 5. Relevant studies
- 6. Discussion
- 7. Summary

1. Aim – Why comment?

- We as consultants have an obligation to
 - Have a reasonable understanding of the design procedures/guidelines we use
 - Add to the industry by making suggestions for improvement
- This is by no means a critique of the design procedures
- Lightly Bound cemented(LBC) material is of particular importance since
 - Few structural design procedures available
 - The design differences are obvious and significant
 - Widely used in some areas
 - Insitu stabilisation promoted as sustainable (6,000 tonnes/km of raw material saved) But an ineffective design can off-set all the sustainability benefits.

2. Definitions

- Cemented/cementitiously stabilised
 - Cement, lime, slag, flyash added
 - Prone to cracking due to fatigue and shrinkage
- Modified UCS (28-day) of <1 MPa (1.5 MPa)
 - Improve performance (reducing plasticity), no significant increase in structural stiffness
 - Characterised as unbound materials and modelled in the same manner
 - Modulus of <500 MPa, layered, anisotropic, 0.35
- Lightly bound UCS (28-day) of 1 to 2 MPa
 - Exhibit behaviour between modified granular materials and more heavily bound cemented materials
 - Modulus of <600 MPa, nonlayered, anisotropic, 0.35
- Heavily bound UCS (28-day) of >2 or 3 MPa (4 MPa in glossary), > 3% cement
 - Design based on flexural strength (like concrete)
 - Modulus of >2,000 MPa, nonlayered, isotropic, 0.2

3. Use & design

Cemented materials

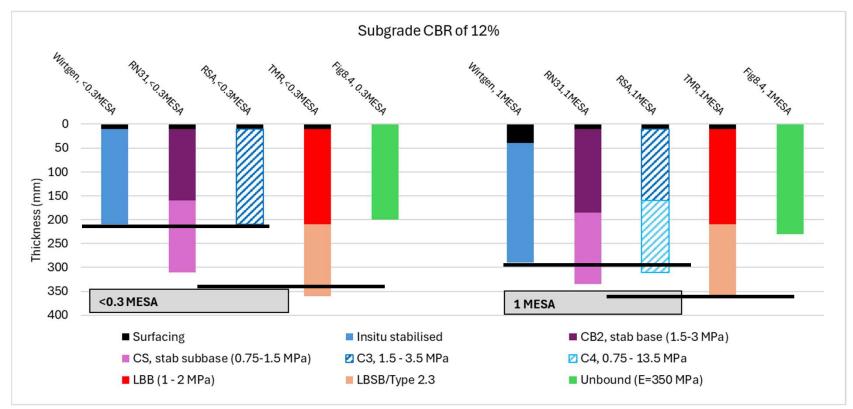
Lightly bound cemented (LBC) materials

Use & design – Cemented materials

- Higher volume, composite pavements, cemented or LMC as subbase
- Austroads (Australia and NZ), subbase with >175 mm asphalt cover
- British (hydraulically bound, UCS >10 MPa), South Africa (C3, UCS> 1.5 MPa), India (CTB, UCS>4.5 MPa; CTSB, UCS 0.75 to 1.5 MPa), Germany, France, US PCA
- Design procedures
 - International: Some version of flexural strength (modulus of rupture)/tensile stress (= stress ratio)
 - Austroads, tensile strain

Use & design – Lightly bound materials

- In general, lower volumes
- TMR: Lightly bound base with sprayed seal with subbase (SLBB), up to 1,000 ESAs/day
- South Africa: Cemented base only <03E+05 ESAs and with cemented subbase <1E+07 ESAs (about 1,200 ESAs/day).
- UK ORN 31: On subgrade CBR 10% up to 1.5 MESA but with cemented subbase
- Design procedures
 - AP-R640-20: "no method to design for the fatigue cracking of LBC layers"
 - Waka Kotahi (NZTA T19-2020)
 - South African
 - Empirical ORN31 (UK, Tropical areas), Wirtgen

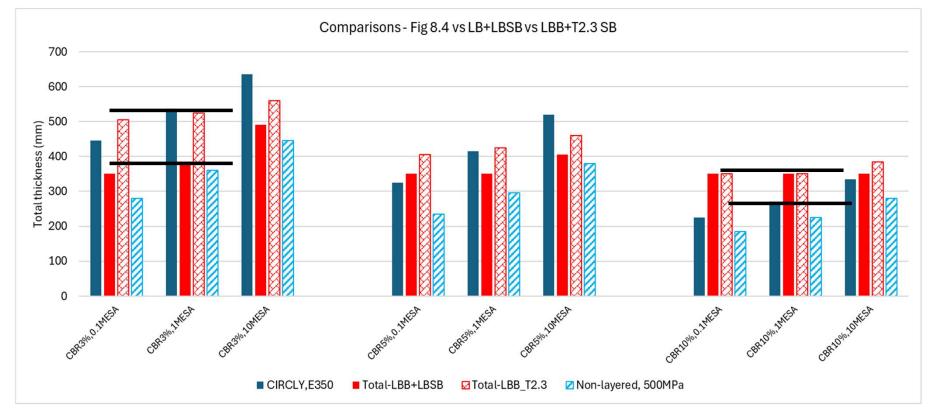

4. Design procedures

- Road Note 39, Wirtgen no specific structural design procedure (catalogue)
- AGPT02 and TMR
- Waka Kotahi (NZTA)
- South Africa

Examples – Lightly bound pavement designs

Design procedures – Cemented, AGPT02

- The first phase (= the allowable number of ESA load repetitions to cemented material <u>fatigue</u>)
 - Power value = 12 (8 to 20)
 - Only E>2,000 MPa
- The second phase (=allowable number of ESA load repetitions to <u>unacceptable permanent deformation</u> after cemented material fatigue)
 - Modulus of 500 MPa (or a fifth of the original modulus if smaller)
 - Poisson's ratio of 0.35, anisotropic and no sublayering
 - Not allowed to be used by all agencies


Design procedures – Lightly bound (LBC)

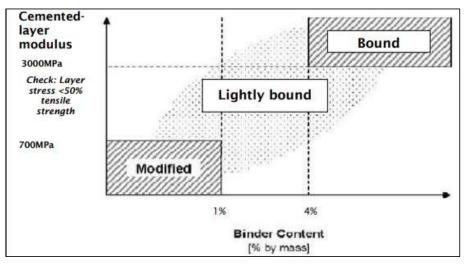
- Austroads/TMR
 - Base: failure = the allowable number of ESA load repetitions to macro-cracking
 - Base: Unlayered, anisotropic, ≤ 600 MPa, min 150 MPa below, min 200 mm.
 - Subbase: Unlayered, anisotropic, 240 to 600 MPa
- Waka Kotahi
 - Max tensile stress <50% of the flexural strength</p>
- South African
 - Phase 1: Effective fatigue (Change of modulus after shrinkage cracking to the effective granular phase) = f(tensile strain, strain at break, material properties, thickness)
 - Phase 2: Granular (All layers in an equivalent granular state).
 - (Advanced) Crushing = f(vertical compressive stress, UCS, material properties)

Examples – A ustroads/TMR/NZ designs

5. Relevant studies

NZTA

Austroads



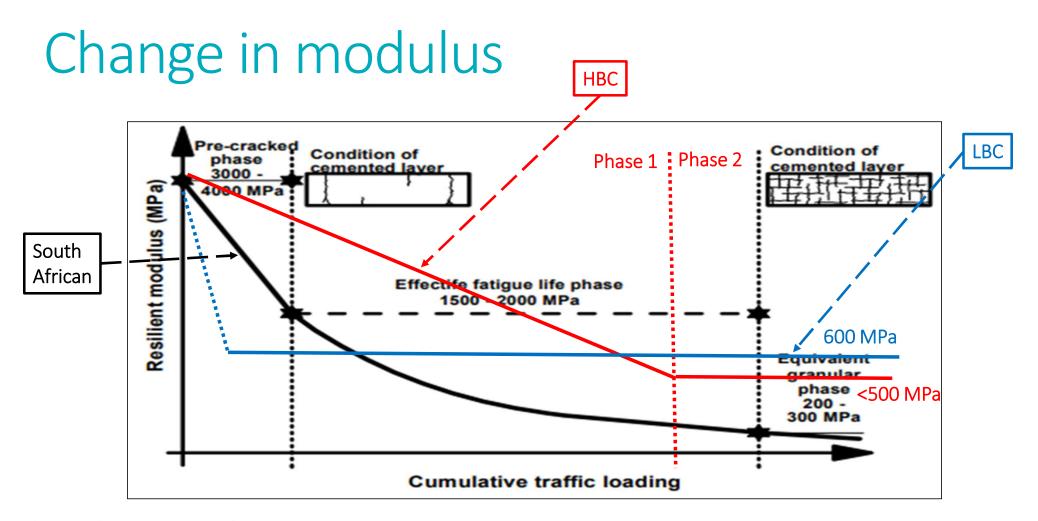
Studies – Waka Kotahi (NZTA) RR461 (2011), RR498 (2013)

- No clear distinction in behaviour
 unbound \rightarrow modified \rightarrow bound
- Bound: 3 to 4% cement, very little rutting, significant loss in stiffness (to that of 1% cement)
- The CAPTIF test and field study: Austroads tensile strain criterion appeared to produce inappropriate results for New Zealand conditions, and the South African approach appears to produce more appropriate results

Studies – Austroads

R462-13, R463-14, R640-20

- Austroads (2017) a method to predict the fatigue life of HBC layers, but none the fatigue cracking of LBC layers.
 - If used, LBC fatigue lives are so low that excessive LBC thicknesses would be required
 - Only consider the Austroads post-cracking phase of LBC life
- Weakly cemented materials are susceptible to crushing
- Low incidence of block/ladder cracking on LBC pavements
- Design procedure
 - From laboratory testing, a procedure was developed to predict the fatigue of LBC materials, this being an extrapolation of the current method for HBC materials
 - To avoid crushing and to maintain load transfer across micro-cracks, limits are placed on the quality granular materials used in LBC materials
 - LBC materials may be used as subbase (no need to inhibit macro-cracking)



6. Discussion

- Behaviour (change in modulus)
- Mode of failure
- Engineering properties
- Fatigue relationships power of strain (n) $N = \left(\frac{constant}{strain}\right)^{n}$ and definition of failure
- Appropriate design procedure
- Observations

Mode of failure

Figure 2.2: A fatigued cemented base pavement showing block cracking on a highway pavement in South Australia

Type of cracking

- Block/ladder
- Crocodile/crushing

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Deformation

46A 53.76 b

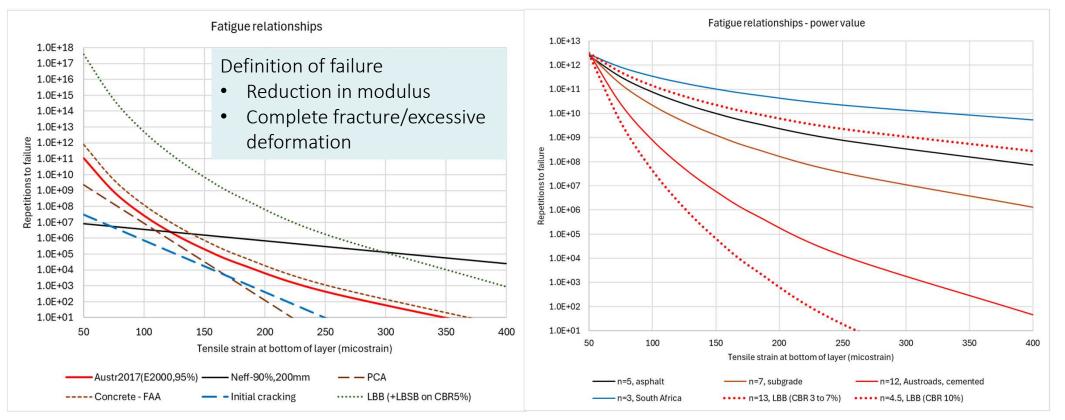
Figure E.24 Mangatu Road 10.07km - alligator cracks

Material Properties – Australia and NZ

Property	Modified	Lightly bound	Cracked (phase 2)	Heavily bound/cemented	Comments
28-day UCS (MPa)	< 1 (1.5)	1 to 2		> 2 (3)	cylinder vs cube
Modulus (MPa)	500 max	Base: 430-600 Subbase: 240-600	500 max (or fifth of original)	>2,000/3,000	
Dry ITS (kPa)	150-350			>500	LBC 250 to 500?
Poisson's ratio	0.35	0.35	0.35		HBC = same as concrete, LBC same as modified
Degree of anisotropy	2	2	2	1	LBC and cracked - anisotropic but not
Stress sensitivity/layer	Yes	No	No	No	sublayered vs modified
Failure observed	Deformation	Cracking&deformation (?)	Deformation?	Cracking – block/ladder	Relevance of modelling
Failure modelled	None	Macro cracking	None	Macro cracking	

Material Properties – Australia and NZ

Property	Modified	Lightly bound	Cracked (phase 2)	Heavily bound/cemented	Comments
28-day UCS (MPa)	< 1 (1.5)	1 to 2		> 2 (3)	cylinder vs cube
Modulus (MPa)	500 max	Base: 430-600 Subbase: 240-600	500 max (or fifth of original)	>2,000/3,000	
Dry ITS (kPa)	150-350			>500	LBC - 350 to 500?
Poisson's ratio	0.35	0.35	0.35	0.2	HBC = same as concrete, LBC same as modified
Degree of anisotropy	2	2	2	1	LBC and cracked - anisotropic but not
Stress sensitivity/layar	Yes At1	No	No	No	sublayered vs modified
Failure observed	Deformation	Cracking&deformation (?)	Deformation?	Cracking – block/ladder	Relevance of modelling
Failure modelled	None	Macro cracking	None	Macro cracking	


Material Properties – Australia and NZ

Property	Modified	Lightly bound	Cracked (phase 2)	Heavily bound/cemented	Comments
28-day UCS (MPa)	< 1 (1.5)	1 to 2		> 2 (3)	cylinder vs cube
Modulus (MPa)	500 max	Base: 430-600 Subbase: 240-600	500 max (or fifth of original)	>2,000/3,000	
Dry ITS (kPa)	150-350			>500	LBC - 350 to 500?
Poisson's ratio	0.35	0.35	0.35	0.2	HBC = same as concrete, LBC same as modified
Degree of anisotropy	2	2	2	1	LBC and cracked - anisotropic but not
Stress sensitivity/layer	Yes	No	No	No	sublayered vs modified
Failure observed	Deformation	Cracking&deformation (?)	Deformation?	Cracking – block/ladde	Relevance of modelling
Failure modelled	None	Macro cracking	None	Macro cracking	

Fatigue relationships

Observations (1)

- Wealth of research information in Australia
 - AP-R462-13 and AP-R463-14 for cemented materials
 - AP-R640-20 for lightly bound materials
- For modified/lightly bound cemented (LBC) materials:
 - The Australian procedure is mainly based on lab testing (limited accelerated testing and some performance-based observations). The lab failure criterion is a percentage (<50%) of the original modulus.
 - The South African procedure is mainly based on the results of accelerated testing (some performance-based observations and very little lab testing). Failure is defined as reaching an equivalent granular state (and deformation).
 - The Waka Kotahi approach is based on deformation and ITS.
- All 3 approaches are valid within the appropriate contexts
- Austroads/NRTO research: Arguably the most recent and comprehensive

Observations (2)

- Modelling Properties
 - Only modified (UCS <1 to 1.5 MPa) is stress-sensitive (layered) but also anisotropic like LBC and cracked
 - Should there be a correlation between stress-sensitivity and degree of isotropy?
- Failure mode
 - Is there a difference between equivalent granular and post-cracked state?
 - Is macro-cracking (from fatigue induced micro-cracking) the appropriate mode of failure for LBC?
 - What about deformation/crushing?
- Fatigue relationships
 - Specifically, the power of strain value for LCM

7. Summary

- There is a high degree of uncertainty about the appropriate structural modelling of the LBC materials
- There are significant differences in design approaches
- All the approaches have merit and based on sound research/observations
- A need to further refine the LBC material design procedures to optimise designs and produce sustainability benefits
- Perhaps, a different approach not from a concrete/cemented perspective and input from developers of the other design approaches
- More performance-based observations

Thank you

Aust Stab