Towards Improved Thickness Design Procedures for Foamed Bitumen Stabilised Layers: New Experimental Findings

Didier Bodin, Principal Technology Leader – NTRO Damian Volker, A/Director (Pavement Rehabilitation), Pavements, TMR

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience

Pullman King George Square, Brisbane • 7th August 2024

Aust Stab

Acknowledgements

NACOE project P132 (TMR & ARRB/NTRO)

• NTRO team: Dr Jaspreet Pooni, Dr Sutha Siva, David Firth and the NTRO Lab

Monash University: Fibre optic sensors support & SPARC Hub collaboration

Outline

- Background
- Scope of the initiative
- Effect of temperature and loading speed on FBS modulus
- Fatigue characterisation and temperature susceptibility
- Innovative laboratory XL-WT testing under field-simulated conditions
- Conclusions

Background

- TMR structural design procedure was developed and used at large scale
- Current mix design practice 3. to 3.5 % bitumen & 1.5 to 2% hydrated lime/ fly ash
- Typical mixtures are rut resistant in early life and beyond (research showed validity up to 50% RAP)
- Thickness design based on an empirical performance relationship:
 - Design modulus (derived from mix design) 3-day cured soaked IT modulus of laboratory prepared specimens adjusted for temperature/loading speed and capped to 2,500 MPa
 - Strains determined from design response to load model (i.e. Circly/AustPads)
 - Empirical performance relationship ⇒ allowable loading
 - Allowable loading ≤ design traffic?
- Method translated to AGPT05:2019 for pavement rehabilitation treatment design
- Reliability factors are not available for FBS pavements

Towards a performance-based characterisation and design procedure

- Aim at a probabilistic approach consistent with the Austroads Mechanistic-Empirical design procedure for bound materials (AGPT02)
- Laboratory-derived performance relationship
- Shift factor (calibrate mean lab performance on mean field performance)
- Reliability factors for given design reliability (97.5%, 95% survival probability)

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Flexural modulus and fatigue performance

New laboratory characterisation procedures

- 90-days cured laboratory-prepared beams (100 x 100 x 400 mm)
- 4pt bending testing conditions
- Flexural modulus (T, f, $\varepsilon \leq 50 \mu \varepsilon$)
- Flexural fatigue (T^oC, f = 10Hz, varying stress)

Source: Zhalehjoo, N, 2022, Laboratory fatigue characterisation of foamed bitumen stabilised materials, Research report, AP-R666-22, Austroads, Sydney, NSW.

Laboratory flexural fatigue relationships

- Austroads report (AP-R666-22)
- 8 different mixes tested to investigate fundamental parameters affecting fatigue performance
 - Effect of modulus
 - Effect of the bitumen content
 - Effect of strength
- Testing at 20ºC
- On going NACOE/Austroads research to consolidate the findings

Source: Zhalehjoo (2022)

Scope of the research

- Undertake fatigue testing on two typical FBS mixes representative of TMR practice
- Assess effect of temperature and loading speed on flexural modulus
- Perform fatigue testing and assess sensitivity to temperature
- Better understanding lab to field shift factor based on XL-WT test

Effect of loading speed/temperature on FBS materials modulus

- Similarly to asphalt and all bituminous materials, FBS mixes are sensitive to temperature and loading speed (viscoelastic material) ⇒ New lab study
- FBS mixtures
 - Type 2.1 crushed rock (x2)
 - Bitumen content 3.5%
 - Secondary binder 1.5% (50/50 Hydrated lime/Fly ash)
- 90-day cured lab-manufactured beams
- 'Master curve' testing:
 - Temperatures = 20, 25 and 35°C
 - Frequency sweep f = 1, 3, 5, 10, 15, 20 Hz

Effect of temperature on the flexural modulus

Effect of loading frequency of modulus

Experiment 2 Mixtures + Austroads (2022) data

Fatigue Testing at 25°C

Fatigue relationship SDE / Model

Strain damage exponent (SDE)

Laboratory model predicts higher lives than measured

Effect of temperature on fatigue

Use similar testing protocol at varying temperature (20, 25 and 35°C)

Drop in fatigue about 4 to 5 times between 20 to 35 °C lower than previous findings showed lives more than 10 times greater for a 10°C increase

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

WT testing to better simulate field conditions

- Flexural fatigue
 - Uniaxial loading (i.e. bending)
 - Unconfined specimen
- Field
 - Rolling wheel load & 3D stress/strain state
 - Material confined in the layer by surrounding material
- Extra-large wheel tracker selected tobetter simulate field conditions
 - 20kN rolling wheel load
 - Confinement (i.e slab specimen confined in a steel mould)

Source: NTRO (2023)

Extra-Large Wheel-tracker for simulating pavement material fatigue Mould frame

- XL-WT originally developed for unbound granular materials
- Used to characterise cracking types of lightly bound stabilised materials (AP-R640-20)
- Allows in-flight response to load monitoring
- High load capacity with slab testing under 20 kN rolling wheel-load

Optic fiber sensors implementation

- Understanding tensile strain at the bottom of the slab
 - Longitudinal
 - Transverse
- Installation at the bottom & top of the slab
- Evaluate the technology robustness

Small strain response to load testing

Determine load vs strain relationship (testing for 100 cycles)

- Linear strain / displacement response with load
- Tensile strain $\varepsilon_{xx} \varepsilon_{yy}$ consistent \Rightarrow bi-directional tensile strain

Life expectancy from flexural fatigue

Load magnitude 4.5 kN

Life predicted based on flexural fatigue results

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Multi-stage testing

- → Mix 2 (x=0,y=0) during fatigue test
- × Mix 2 (x=0,y=0) during 100 cycles with 4.5 kN
- --- Mix 1 (x=0,y=0) during fatigue test
- Mix 1 (x=0,y=0) during 100 cycles with 4.5 kN
- Number of load repetition far exceeded prediction from flexural testing

Conclusion

- Effect of temperature on modulus and loading speed found lower than currently assumed
- Improved assessment of fatigue performance temperature susceptibility
- Use of fibre optic cables gives an interesting insight into the flexural response under rolling wheel-load
- XL-WT testing provided a confined and 3D stress representing the field
- Shift factor between flexural testing and WT is far greater than 7

Continuing research

- Assessment of field performance to evaluate the lab-to-field shift factor
- Further ongoing validation of the effect of temperature/loading speed sensitivity and model refinements
- Reliability (i.e. surviving rate) of the fibre optic sensors should be improved

Thank you

Didier Bodin

Principal Technology Leader, Safer Smarter Infrastructure Portfolio Leader - Pavement Research Leadership

NTRO

80a Turner St, Port Melbourne, VIC, Australia 3207

Didier.Bodin@ntro.org.au | arrb.com.au

Australian Pavement Recycling and Stabilisation Conference Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024)

