Ipswich City Council: Foam Bitumen Stabilisation Journey – Case Study

John Tannock, Principal Engineer (Pavements) Ipswich City Council

Australian Pavement Recycling and Stabilisation Conference

Designing for Reuse and Resilience Pullman King George Square, Brisbane • 7th August 2024

Topics to be Covered

- Why consider foam bitumen
- Lessons learned

Why Consider Foam Bitumen?

- 1) Flood resilience
- 2) Economics

Flood Resilience - 1974 Flood Event:

Economics:

Treatment	Cost as % of Full Reconstruction
Full Reconstruction	100%
Plant Mixed Foam Bitumen	65%
Mill & Fill	60%
Insitu Foam Bitumen Stabilisation	53%

LESSONS LEARNED

Lesson #1 Terminology needs to be clear

- Make clear distinction between 'insitu stabilised' foam bitumen & 'plant mixed' foam bitumen
 - Sad tale of Kennedy Drive

Lesson #1 (Cont'd)

Kennedy Drive Pavement:

Original pavement report:

60mm AC14M (C320) Asphalt Surface Layer 10mm C170 Initial Seal Coat 200mm Foam Bitumen Stabilised Layer Existing granular pavement

Future pavement report:

60mm AC14M (C320) Asphalt Surface Layer 10mm C170 Initial Seal Coat 200mm Insitu Foam Bitumen Stabilised Layer Existing granular pavement

Lesson #1 - Outcome

 Make clear distinction between 'insitu stabilised' foam bitumen & 'plant mixed' foam bitumen

Lesson #2 Preventing over-topping Damage

Ipswich St, Grandchester (2018):

500mm Pavement: 7mm Final Seal 10mm Primer Seal 125mm Unbound Base Type 2.2 (CBR 60) 125mm Unbound Base Type 2.4 (CBR 30) 250mm Unbound Base Type 2.5 (CBR 15)

Lesson #2 Preventing over-topping Damage

Ipswich St, Grandchester (2018):

<u>500mm Pavement:</u> *7mm Final Seal 10mm Primer Seal 125mm Unbound Base Type 2.2 (CBR 60) 125mm Unbound Base Type 2.4 (CBR 30) 250mm Unbound Base Type 2.5 (CBR 15)*

Lesson #2 - Preventing over-topping Damage:

Ipswich St, Grandchester (2023):

TYPE 1 PAVEMENT REPAIR / RESEAL (2 COAT SEAL) - FULL WIDTH

14/7m SPEC	IT DOUBLE DOUBLE SEAL, WITH BASE REPAIR AS
TOP COAT:	S45R at 0.9 L/m2 residual binder. 7mm aggregate (spread rate of 225m2/m3)
BOTTOM COAT:	S45R at 1.5 L/m2 residual kinder. 14mm aggregate (spread rate of 103m2/m3)
BASE REPAIR:	Grade remaining material down to upper base level of originally constructed road (167mm kelow FSL). Import and re-compact imported 150mm Plant Mixed Foam Bitumen in accordance with TMR Specification MRTS09

Lesson #2 - Preventing over-topping Damage:

Lesson #3 The Sad Tale of Settler Way

Settler Way:

Settler Way

Settler Way

- Potential Differences Between Sections:
 - Pavement:
 - Grading
 - Atterberg Limits
 - Foam Bitumen Mix
 - Moisture Content
 - Subgrade:
 - CBR
 - Plastic Index (PI)
 - Moisture Content

Settler Way – Subgrade Moisture

	Southern Section	Northern Section
Pavement:		
Linear Shrinkage (max.)	3.8	4.6
Plastic Index (max.)	5.6	8.4
Foam Bitumen Mix	Identical	Identical
Moisture	6.5%	5.2%
Subgrade:		
Design CBR	5.0	2.5
Swell (Max.)	1.6	2.3
Moisture (Average)	0.87 x OMC	1.15 x OMC
Moisture (Max.)	1.01 x OMC	1.73 x OMC

Settler Way

But wait, there's more!

Settler Way

Just complies with MRTS05 'C' grading coarse limit.

Pullman King George Square, Brisbane • 7th August 2024

18

Pavement Recycling and Stabilisation Association

IPWEAQ Masterclass - October 2021

ease in lower envelope limit: enhances the fines content; ces permeability; increases surface area.

Settler Way

Settler Way

But wait, there's more!

Settler Way – Compaction

MRTS07C – Table 8.6.19 – <u>Minimum</u> compaction requirements:

Vibrating pad foot roller	For layer thickness < 200 mm: not required	For layer thickness 200 – 325 mm: 21 tonnes	1
Vibrating smooth drum roller	For layer thickness < 200 mm: 16 tonnes	For layer thickness 200 – 325 mm: 16 tonnes	1
Multi-tyre roller	Minimum 12 tonnes	+	1

- In worst performing part of northern section 185mm FBS
 - 22t vibrating pad foot roller possibly not required?
 - 20t vibrating steel drum roller possibly too heavy?
 - 2.5t twin drum roller
 - 16t Multi tyred roller possibly too heavy?

Settler Way

But wait, there's more!

Settler Way – Subgrade Insitu CBR

	Southern Section	Northern Section
Pavement:		
Linear Shrinkage (max.)	3.8	4.6
Plastic Index (max.)	5.6	8.4
Foam Bitumen Mix	Identical	Identical
Moisture	6.5%	5.2%
Subgrade:		
Effective CBR below FBS layer based on subgrade Insitu CBR	17	7
Swell (Max.)	1.6	2.3
Moisture (Average)	0.87 x OMC	1.15 x OMC
Moisture (Max.)	1.01 x OMC	1.73 x OMC

Settler Way

But wait, there's more!

Settler Way – Existing Pavement 'Dig-ability'

	Southern Section	Northern Section
Pavement:		
'Dig-ability' (Hard / Moderate / Easy)	Moderate to dig	Easy to dig
Subgrade:		
Effective CBR below FBS layer based on subgrade Insitu CBR	17	7
Swell (Max.)	1.6	2.3
Moisture (Average)	0.87 x OMC	1.15 x OMC
Moisture (Max.)	1.01 x OMC	1.73 x OMC

Lesson #3 – Settler Way

So what happened on Settler Way (Northern Section)?

- Highly permeable pavement (PSD & 'easy to dig') on top of:
- Pool of excess water in subgrade with:
- <u>Heavier than the minimum</u> required compaction equipment, pumping water into the FB stabilised pavement

Lesson #4 – Mill out after stabilisation

Summary of Lessons Learned:

- 1) Make clear distinction between "plant mixed" & "insitu" FBS
- 2) Where pavement subject to inundation, foam bitumen is preferred option
- 3) Check support under FBS layer based on subgrade insitu CBRs prior to construction:
 - a) Where support CBR < 7.0 Possible **SHOWSTOPPER?**
- 4) Where subgrade MC > OMC RED FLAG!
- 5) Where pavement PSD at lower envelope boundary RED FLAG!
- 6) Where 'dig-ability' of exist. pavement under FB layer 'easy to dig' RED FLAG!
- 7) Where red flags encountered, need to examine options:
 - a) Consider blending with fresh material to push PSD curve towards middle of envelope.
 - b) Carefully plan compaction methodology
 - c) At what stage do we abandon insitu FBS?
- 8) Where K&C mill out for surface layer <u>after</u> stabilisation

- 1) Develop *Risk Score Tool* to better understand the risk of water pumping?
- 2) Develop Compaction Methodology to minimise water pumping
- 3) Gain better understanding of required support under insitu FBS

- 1.) <u>Develop Risk Score Tool Option 1:</u>
 - *a)* Allocate risk points for each of the red flags identified?
 - *b)* Sum of risk points = Risk Score (eg low risk to extreme)?
 - c) Decision to proceed with FBS depends on risk appetite for particular project?

1.) <u>Develop Risk Score Tool – Option 2</u>

Should we develop some form of risk score relationship between pavement permeability and Subgrade MC/OMC ratio?

2.) Develop Compaction Methodology to minimise water pumping

- a) Up to what layer thickness of FB should we apply static roll initially before switching to vibration mode and still achieve compaction in lower portion of layer?
- b) How many passes in static mode before vibrating?
- c) If high risk of water pumping, can we lift depth threshold before using vibrating padfoot?
- d) What is ideal roller speed?
- e) What degree of vibrating impact is appropriate but still effective?
- f) TMR Spec identifies minimum compaction equipment –, but.....what is <u>maximum</u> where pumping subgrade moisture is a risk?

- 3.) Gain better understanding of required support under insitu FBS layer
 - a) Eg if no red flags, why not accept say CBR 4.0 support?

Thanks to:

- Scott Young (SPA)
- Damian Volker (TMR)
- Dr. Greg Stephenson (BCC)
- Sophia Andary (ICC)
- Scott Jefferson (ICC)
- Scott McDonald (ICC)
- Crystal Lee (ICC)

