Study of the most sustainable and costeffective options for rehabilitating flexible pavements

Hamidreza Sahebzamani, Technical Services Manager

SAMI Bitumen Technologies

Xavier Guyot, Technical Director

Colas International Division

Australian Pavement Recycling and Stabilisation Conference

Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Contents

- Research objectives
- Introduction to base stabilisation
- Modelling stabilised base courses according to Austroads approach
- Laboratory evaluation of FTB and ETB
- Thickness design with different stabilised applications
- Life Cycle Assessment using SEVE Software
- Cost analysis using the roadresource.org tool

Research objectives

Finding the optimum pavement solution for medium and hightraffic roads

- Investigation of 3 different pavement structures and two different traffic scenarios
 - Granular base + HMA
 - Foam Treated Base + HMA
 - Emulsion Treated Base + HMA
- Investigation of Lab study to find the optimum characteristics for FTB and ETB
- Pavement designs for all pavement and traffic scenarios using the CIRCLY software
- Life Cycle Assessment for all pavement and traffic scenarios using the SEVE software
- Cost comparison for different alternatives with the roadresource.org tool

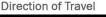
Introduction

Treated base / Stabilised base

 Definition: An intimate mixture of natural and/or crushed aggregates with labdesigned amount of different binders (cement, lime, bitumen, emulsion, chemicals, etc) and water that hardens after compaction and cures, to form a strong durable paving material

Two different main categories

- In-place
- In-plant

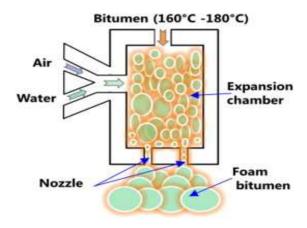


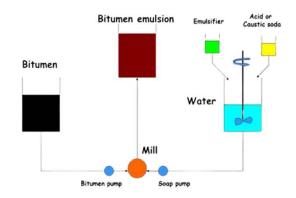
In-place stabilisation

- Cement/Lime spreading
- Pulverization/Crushing/Mixing
 - Secondary binder added to mixer (if needed)
- Initial compaction
- Levelling
- Final compaction
- Curing (if needed)

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

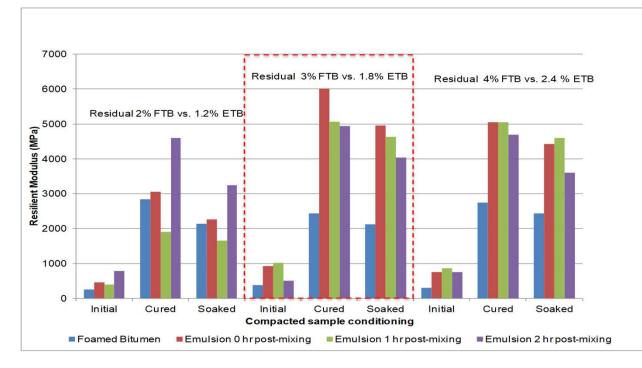
Binder (additive) types


Dry


- Cement
- Lime
- Bentonite
- CKD (Cement Kiln Dust)
- LKD (Lime Kiln Dust)
- Fly ash
- Mineral consolidators

Liquid

- Hot bitumen
 - Foamed
- Bitumen emulsions
 - CSS-1
 - CSS-1h
 - HFMS-2S
 - Proprietary emulsions
- Calcium chloride
- Magnesium chloride
- Enzymes
- Others



Laboratory studies

Lab study – presented in previous Auststab conference

- Modulus of ETB vs FTB in different bitumen contents
- Emulsion type and content, filler type and content have a big impact on ETB performance

Homogeneity of bitumen dispersion

Laboratory studies

New lab studies on ETB mixes

Number	Emulsion type	Emulsion content (%)	Cement content (%)	Modulus (MPa)
1	А	7.5	0	291
2	А	7.5	1	1350
3	А	5	0	790
4	А	5	1	1944
5	В	7.5	0	2676
6	В	7.5	1	1219
7	В	5	0	2479.67
8	В	5	1	571.5
9	С	7.5	0	1976.5
10	С	7.5	1	1119
11	С	5	0	3587.3
12	С	5	1	1174.3

- Impact of formulation of emulsion on the performance of the ETB mixes
- Use of cement doesn't lead systematically to an increase in the modulus
- Formulation should be done for each aggregate case by case

Different design approaches

Austroads assumes FTB as an asphaltic layer with low bitumen content.
 Fatigue – Stiffness relation is similar to that of Asphalt and is related to bitumen volume.

$$N = \left(\frac{K}{\mu\epsilon}\right)^5$$

 NZ assumes FTB as an enhanced waterproof (stop potholes) granular material with a modulus fixed at 800 MPa and no fatigue equation.

Using CIRCLY software (Linear Elastic Layer method)

Two different traffic scenarios / Three different pavement sections

Pavement sections	Traffic 1 (ESA=1E7)	Traffic 2 (ESA=1E8)	
Granular base + HMA	Case study 1	Case study 4	
FTB + HMA	Case study 2	Case study 5	
ETB + HMA	Case study 3	Case study 6	

Austroads AGPT02 Guide to Pavement Technology Part 2: Pavement Structural Design

No.	ID			Title	Minimum Thickness	Maximum Thickness	Current Thickness	CDF	
1	AC20-	AC20-ver2 AustStab conference				60.00	7.97E-02		
2	FTB-v	er2		FTB AustStab conference			300.00	7.90E-01	
3	Sub-ve	er2		AustStab conference			0.00	4.23E-04	
		▼	Design	thickness of layer	highlighted below	h.	Calculate Cost	Total Cos	t. \$143.92/m2
		₹	Design	thickness of layer	highlighted below				t: \$143.92/m2
		v	Design No.	thickness of layer	Title	Minimum Thickness	Calculate Cost	Total Cos Current Thickness	t: \$143.92/m2 CDF
		•	1	1	1		Maximum	Current	
		V	1	ID	Title AustStab		Maximum	Current Thickness	CDF
		•	No.	ID AC14-ver2	Title AustStab conference AustStab		Maximum	Current Thickness 50.00	CDF 2.04E-07 1.00E+00

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

CIRCLY - Version 7.0 (7 November 2022)

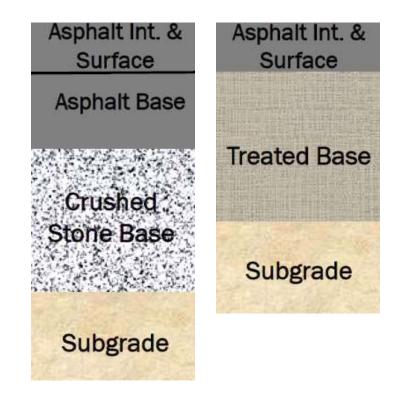
Build: 7.0.203.09 Copyright © Mincad Systems P/L. 1970-2022.

Licensed to: Centre for Pavement Engineering Education (CPEE)

Licence Number: 28087 Licence Key Type: Software Lock Licence Type: Renewable Expiry Date: 24 August 2023 Days to Renewal: 21

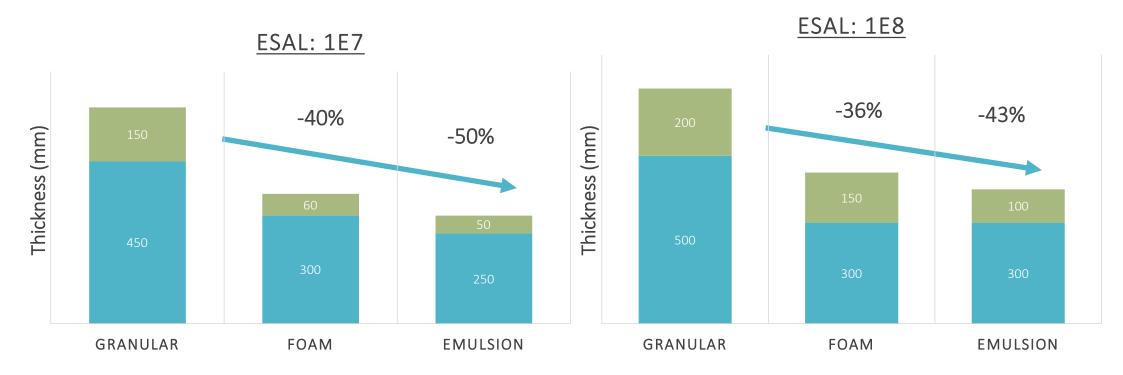
End User Licence Agreement

Thickness design – Material assumptions


- Performance exponent (k) for subgrade = 0.00915
- Modulus of ETB has been measured in the lab
- Emulsion content of the ETB is considered 5% in order to have asphaltic behaviour

	Vertical modulus (MPa)	$\frac{E_v}{E_h}$	Poisson's ratio	Bitumen content (%)	Bitumen volume (%)	Performance exponent (b)	Shift factor
AC14	4000	1	0.4	5.3	12.7	5	6
AC20	4500	1	0.4	4.7	11.3	5	6
FTB	1500	1	0.4	3	6.9	5	6
ETB	3000	1	0.4	3 (residual)	6.9	5	6
Granular base	800	2	0.35	-	-	-	
Subgrade	50	2	0.45	-	-	7	

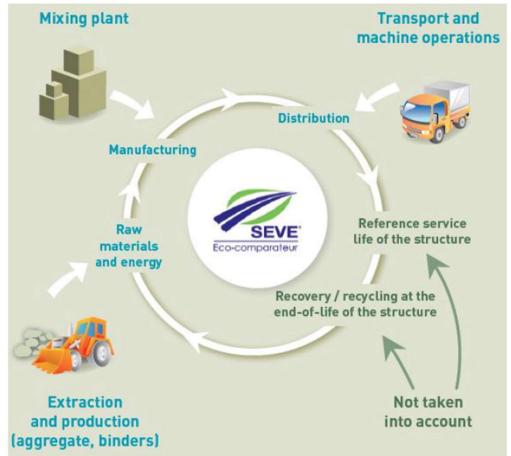
- Project reliability factor: 97.5
 - Asphalt fatigue RF: 9
- TLD: 110 M7 Motorway
 - ESA/HVAG: 0.907
- N_{DT}: 1.1e7 and 1.1e8
- Thicknesses were calculated for all 6 case studies.


Thickness design – Results

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
	ESAL: 1E7			ESAL: 1E8		
AC14	50 mm	60 mm	50 mm	50 mm	50 mm	40 mm
AC20	100 mm	-	-	150 mm	100 mm	60 mm
GB	450 mm	-	-	500 mm	-	-
FTB	-	300 mm	-	-	300 mm	-
ETB	-	-	250 mm	-	-	300 mm
Sum	600 mm	360 mm	300 mm	700 mm	450 mm	400 mm

Thickness design – Results

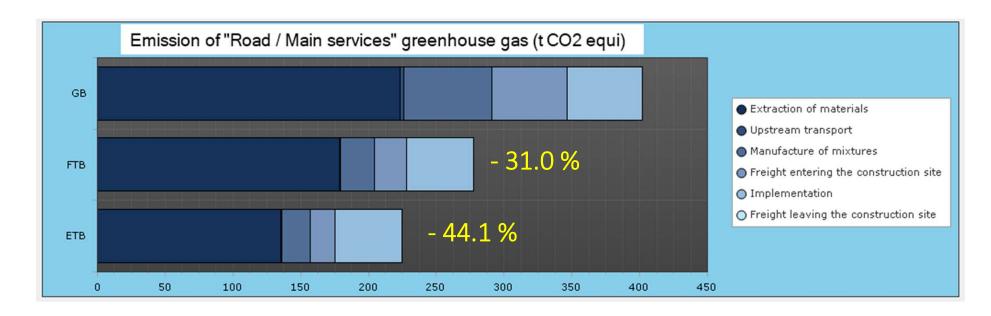
- An eco-comparator developed by the road transport industry (equivalent to AfPA) in France in 2010
- New web base version in 2022
- English version available
- Environmental assessment of each phase of building and maintenance of roads, earthworks and utility networks
- Compare two or more technical solutions based on the partial life cycle analysis (LCA)



- Follow general principles of ISO 14040: 2006 - EN ISO 14044: 2006
- Database of materials, machines, products shared by all the users
- Database of formulas (concrete, asphalt) specific to each manufacturing plant (production tools for asphalt or concrete)
- Emission factor customized to local conditions (country based)

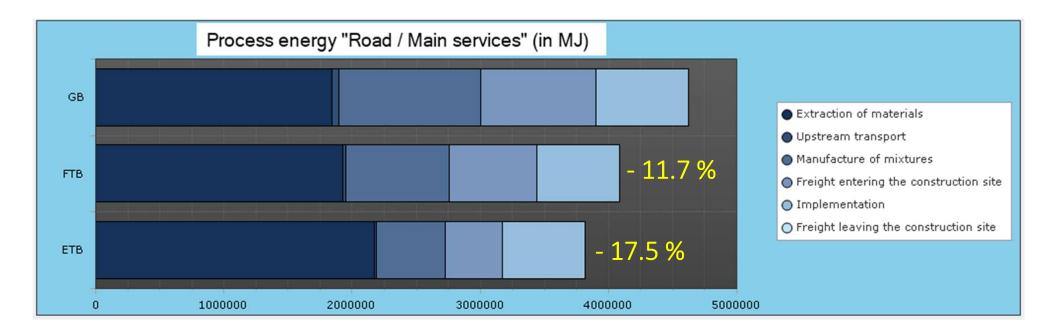
Life cycle assessments carried out for each scenario on 4 indicators

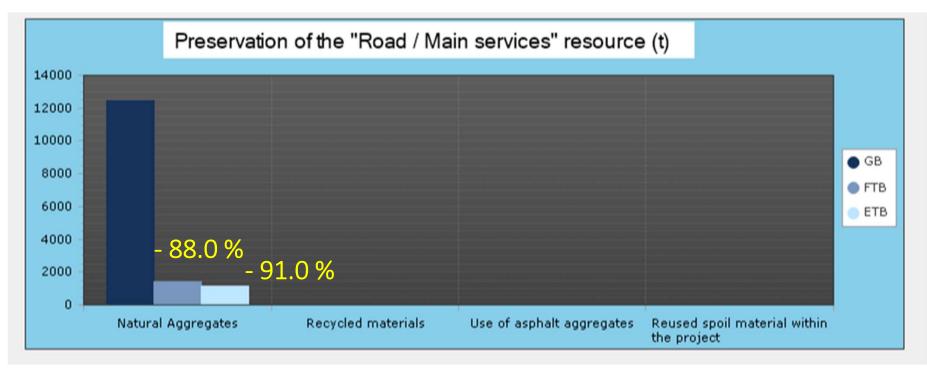
- GHG emission
- Energy consumption carried
- Resource conservation
- Ton-kilometer saved


Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

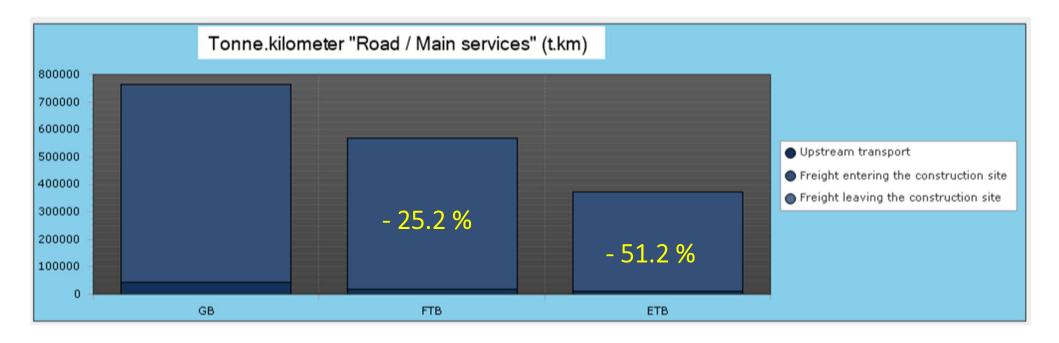
Pavement Recycling and Stabilisation Association

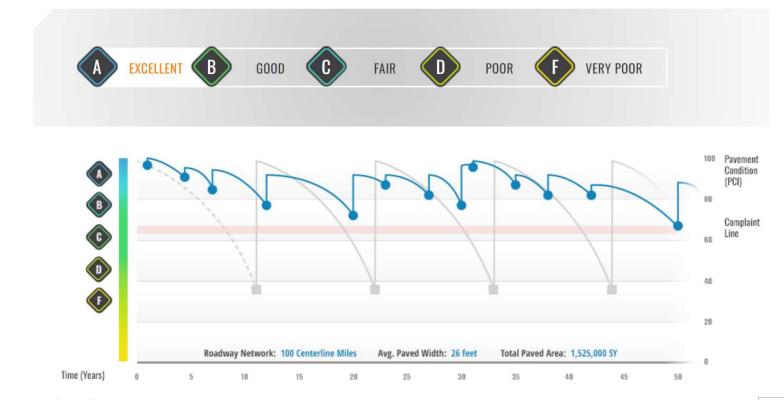
GHG Emission comparison between Cases #1 #2 #3





Resource conservation indicator Cases #1 #2 #3




Ton.kilometer indicator Cases #4 #5 #6

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Life Cycle Cost calculator

Unit Costs for each application

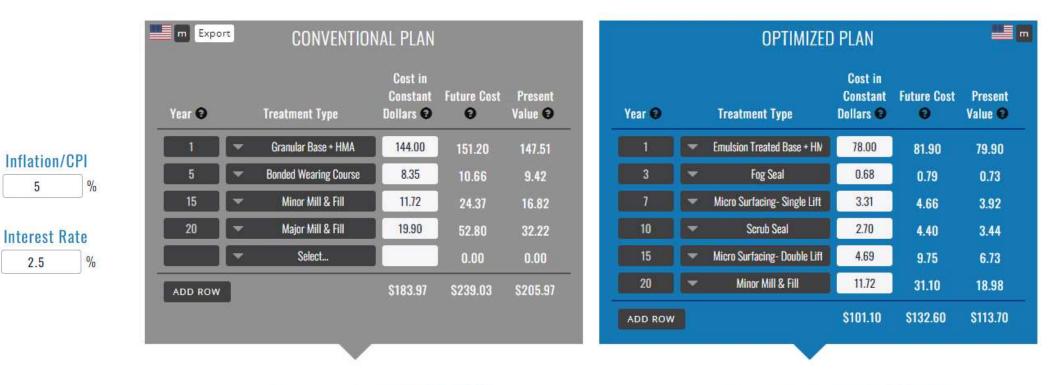
Number	Layer	Rough unit prices (\$) – including supply, transport, application
1	AC14	\$220 per ton. (assumed density: 2.5 ton/m ³)
2	AC20	\$200 per ton. (assumed density: 2.5 ton/m ³)
3	GB	\$75 per ton. (assumed density: 2 ton/m ³) – including base material, transport, lay and compaction
4	FTB	\$76 per ton. (assumed density: 2.3 ton/m ³) – in-place recycling, 0% admix aggregate, 3% foam bitumen, 2% lime
5	ETB	\$92 per ton. (assumed density: 2.3 ton/m ³) – in-place recycling, 0% admix aggregate, 5% bitumen emulsion

* Prices represent the average quotes provided by three different contractors for a typical project in either NSW or VIC.

Initial Cost calculation

Initial price calculation for each design and ESA scenarios (Australian Dollar per square meter)

Case	ESAL: 1E7	ESAL: 1E8
Granular base	\$144	\$178
Foam treated base	\$82	\$130
Emulsion treated base	\$78	\$114



Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 45% and 43% lower price when using ETB and FTB instead of Granular base for 1E7 ESAL.
36% and 27% lower price when using ETB and FTB instead of Granular base for 1E8 ESAL.

Life Cycle Cost calculator

Net Present Value: \$205.97 / SM

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

%45 cost reduction in the life cycle

RoadResource.org

Net Present Value: \$113.70 / SM

Provided By: 🛷 PPRA

Conclusion

Costs Benefits

- On average, ETB and FTB have 40% and 35% reduction in the initial cost of the project
- In 20 years of life cycle cost analysis, using ETB will have around 45% less cost comparing a granular base

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Engineering Benefits

- Enhance Road Performance with better Strength, impermeability and flexibility
- CDFs are lower in asphalt layers in ETB and FTB applications
- On average, 46% and 38% reduction in thickness for ETB and FTB comparing granular base

Conclusion

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Environmental Benefits

- Reduce fuel consumption and greenhouse gas emissions with reduced trucking and thickness
- On average, 31.0% and 44.1% reduction in GHG emission for FTB and ETB comparing granular base
- 11.7% and 17.5% reduction in energy consumption for FTB and ETB comparing granular base
- 88% and 91% less virgin material for ETB and FTB applications
- 51.2% and 25.2% less transportation for ETB and FTB applications

Time Savings Benefits

- In-place work eliminates time for trucking and hauling
- Reducing total pavement thickness can increase productivity significantly

