Blacks Road – Subgrade and Existing Granular Material Stabilisation

Damien Edwards, National Technical Manager - Australia MBA, BEng(Hons)(CIVWAT), CPEng, RPEQ Hiway Stabilizers

Australian Pavement Recycling and Stabilisation Conference

Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Location – Blacks Road – Gillies Plain

- City of Port Adelaide Enfield Council
- Blacks Road extends between Grand Junction Road and Sudholz Road
- Reconstruction Section between
 Grand Junction Road and Dally Road
- Reconstruction length approx. 300m

Project Overview

- The section of Blacks Road was constructed in 1969, and reconstructed in both 1985 (by Council) and 2023 (by Council and Hiways).
- Reseal in early 2000's.
- Highly reactive clays in this area notable undulations when driving this section of road, typical
 of pavements in the surrounding area, resulting from large seasonal expansivity of fine,
 moisture sensitive soils.
- Reconstruction to address complaints by community regarding roughness.
- PAEC nominated pavement design was 300mm of granular material with a 40mm asphalt wearing surface.
- Hiways engaged to assess PAEC pavement design and offer alternative design options that challenged current construction methodologies used by PAEC meeting current design protocols.

Pavement Failure Mechanisms

	Deflection and Curvature Results – Tested by a Deflectograph				
	Testing Date – Sept 2021				
		90th Percentile Run 211460	90 th Percentile Run 211460		
	Deflection (mm)	1.09	1.26		
in the second se	Curvature (mm)	0.34	0.38		
Longitudinal Cracking	ent Recycling	Oxidised Asphalt	Geofabric under asphalt wearing surface		
and Stabilisation Sustainable Pavements for Pullman Albert Park, Melbourn	Conference Future Generations • 22nd August 2023	Crocodile	Cracking		

Undulating Surface

Technical Data Provided

- PAEC provided geotechnical data and consisted of:
- Two borelogs to a depth of 1.0m
- Gradings of subgrade and Atterbergs
- Plastic Index for the sampled subgrade for BH1 and BH2 were 49 and 41 respectively.
- Linear Shrinkage for the sampled subgrade for BH1 and BH2 were 19% and 17% respectively
- Traffic Count Data Nov 2020
- Pavement Design Life 20 years

Expansive Nature of Subgrade

- PAEC does not have anyway of classifying the expansive subgrades.
- Refer to Austroads Methodology (Austroads Part 2 Table 5.2 Guide to classification of expansive soils).
- Two reports provided by PAEC the data available and assessed is LL (%) and PI.
- Although CBR test was undertaken swell was not reported.
- Based on the information provided the subgrade Expansive Nature was deemed to be Very High.

Expansive nature	Liquid limit (%)	Plasticity Index	PI x % < 0.425 mm	Swell (%) (1)
Very high	> 70	> 45	> 3200	> 5.0
High	> 70	> 45	2200-3200	2.5-5.0
Moderate	50-70	25-45	1200-2200	0.5-2.5
Low	< 50	< 25	< 1200	< 0.5

Table 5.2: Guide to classification of expansive soils

1 Swell at OMC and 98% MDD using standard compactive effort; four-day soak. Based on 4.5 kg surcharge.

Project Outcomes

- Prepare a suitable pavement design to:
 - Recycle and reuse as much of the insitu aggregate as possible.
 - Consider options to minimise subgrade weakness and moisture sensitivity
 - Limit the impact on the community construction during school holidays.
 - Reduce/eliminate the amount of spoil to landfill.
 - Improve the ride quality, long term.
 - Part Service Requirement to use PAEC road construction team.
 - Upskill PAEC road construction team.

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Geotechnical and Laboratory Testing

- An additional 3 test pits were undertaken to provide the following data:
 - Subgrade
 - Field DCP
 - Remoulded 4 Day soaked CBR
 - Swell
 - Linear Shrinkage of the subgrade
 - Atterberg limits
 - Granular Material
 - Gradings
 - Linear Shrinkage of the subgrade
 - Atterberg limits

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Mix Design Testing:

2010/20

Checked CA

- Lime Demand Subgrade
 - Design lime content = 4.0%
 - Quicklime used

```
UCS - Cement (LBCM)
```

- UCS testing results at 7 day and 28 day cure
- Two application rates 2.0% and 2.5%, UCS after 28 days was 2.6MPa and 3.0MPa respectively
- *Design cement content = 1.5%*

Pavement Design

Existing Pavement Structure

Borehole Logs - Blacks Road						
	SMS Geotechnical (Hiway)		LAB+Field (Provided by PAEC)			
TP2	TP3	TP4	TP1	TP2		
40 Asphalt	30 Asphalt	60 Asphalt	40 Asphalt	50 Asphalt		
 110 - Fill Sandy GRAVEL, fine to medium grained, pale brown, fine to coarse sand, trace of fines 120 - Fill - Sandy GRAVEL, fine to medium grained, brown, fine to coarse sand, trace of fines 	190 - Fill Sandy GRAVEL, fine to coarse grained, grey, fine to coarse sand, trace of fines	230 - Fill Sandy GRAVEL, fine to coarse grained, pale brown, fine to coarse sand, trace of fines	160 - 20mm Quarry Rubble, Yellow	160 - 20mm Quarry Rubble, Yellow		
230 - Fill Gravelly SAND, fine to coarse grained, grey, fine to	170 - Sandy GRAVEL/Gravelly SAND, fine to medium grained, grey, trace of fines.	90 - Fill Sandy GRAVEL, fine to medium grained, grey, fine to coarse sand, with fines	200 - Gravelly SAND, fine to coarse, Yellow	300 - 20mm Quarry Bubble, grev		
medium gravel, with fines	210 - Fill Sandy SAND, fine to coarse grained brwon, fine to medium gravel, trace of fines	60 - Fill Silty Sandy CLAY, low plasticity, brown, fine sand	600 Sandy CLAV birth			
600 - CLAY, high plasticity, black		410 CLAY, high plasticity, mottled dark brown/pale brown	600 - Sandy CLAY, high plasticit, dark grey, slightly calcareous	500 - Sandy CLAY, high plasticit, dark grey, slightly calcareous		
400 - CALY, high plasticity, brown	900 - CLAY, high plasticity, dark brown, with fine sand	650 CLAY, high plasticity, brown	End Bore 1.0	End Bore 1.0		
End Bore 1.5m	End Bore 1.5m	End Bore 1.5m				

Existing Pavement Thickness Ranged between 400 – 600mm

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Pavement Design Options

	Full Depth Granular	Full Depth Granular + Stabilised Subgrade	LBCM (500MPa) + Stabilised Subgrade	FBS (1500MPa) + Stabilised Subgrade		
	Option 1	Option 2	Option 3	Option 4		
Wearing Surface (DIT AC10 A15E)	40	40	40	40		
Basecourse	220	240	200	270		
Subbase	450	150	150	150		
Stabilised Subgrade (CBR =6)		300	300	300		
Natural Subgrade – CBR = 2						
Excavation Depth	710	430	390	460		
Total Pavement Depth	710	730	690	760		

It can be seen Lightly Bound Cemented Material (LBCM) Basecourse requires the least amount of excavation / new granular material

Removal of Existing Pavement

 Profiling of the surface and reuse as RAP in the final asphalt wearing surface.

- Profiler used to excavate to top of design subgrade level, some remnant granular material retained.
- Material stockpiled and stored at a local Downer yard, close to site.

Subgrade Stabilisation

- Application of 3.0% lime to exposed subgrade (Highly Plastic and Reactive Clays)
- Dependable treatment depth of 300mm
- Lime content determined by lime demand testing
- Use of Quicklime
- Addition of water to hydrate the lime slaking
- Mix hydrated lime into subgrade
- Watermain was struck on the last run.
- Free water was pumped from the surface and construction continued; no soft spots in treated subgrade.

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Pavement Recycling and Stabilisation Association

Recycling Won Granular Material

- Imported recycled granular material that was won and stockpiled PAEC.
- Some additional granular imported (PM2/20), approximately 2% of the total amount of granular material required – PAEC.
- Mix Design undertaken for cement content Target UCS 1.0 2.0MPa, noted previously.
- Recycled granular material (incorporating minor imported quarried granular PM2/20) placed in two layers.
- Layer 1 subbase / working platform, placed at 200mm.
- Layer 2 LBCM layer placed at 150mm mixed at 200mm capture part of the subbase layer to minimise any chance of a delamination horizon – PAEC.
- Stabilisation by insitu recycling of granular material by Hiways.
- Compaction and trimming PAEC.

Construction of LBCM

- Prior to placement of base layer, subbase compacted to design specification 96% MMDD.
- Base layer placed, compacted but not to any requirement.
- Spread cement at the nominated spread rate of 1.5%
- Mix with the addition of water to achieve OMC.
- Compact to 98%MMDD
- Finish primary compaction and trim within 2 hours of completion of mixing

Construction of the Wearing Surface

Wearing surface constructed by Downer – 40mm DIT AC10M A15E No prime or tack coat applied

Final Outcomes

- Eliminated the need to dump existing granular material, estimated cost saving of approximately \$70,000.
- The cost of stabilising the subgrade and granular material, was a cost neutral option, when compared to a standard granular option.
- Adopting the stabilising methodology offers the following advantages when assessed against an unmodified granular pavement:
 - A pavement structure that has improved shear capacity.
 - Good load capacity lower curvature for good asphalt wearing course performance
 - Improved moisture resilience of both basecourse and subgrade.
 - Addressed the reactive clay and tripled design strength.
 - Recycle by reuse existing granular (and subgrade) materials about 98%.
 - Minimised the amount of imported virgin granular material about 2.0% of the total volume.

