Outcome of the National Asset Centre of Excellence (NACoE) Insitu Slaking of Quicklime Trials

Damian Volker, A/Director (Pavement Rehabilitation) Robyn Devitt, Chemist/Materials Technologist Department of Transport and Main Roads (TMR)

Australian Pavement Recycling and Stabilisation Conference

Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Recap (Since 2019 AustStab Annual General Meeting)

Intention of field trials to explore innovative methods of slaking quicklime

NACOE trial Mackay Ring Road 2018

Why do we need this?

- Quicklime is cheaper than hydrated lime:
 - 76% of quicklime is required compared to hydrated lime
 - hydrated lime is essentially carting 24% water to a project.

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 NACoE trial Mackay Ring Road 2018

Chemical Reactions

- Burning
 - CaCO₃ + heat (>1000°C) -> CaO + CO₂
- Slaking
 - CaO + H₂O -> Ca(OH)₂ + heat
- Pozzolanic reaction
 - Ca⁺⁺ + OH⁻ + soluble clay silica -> Calcium Silicate Hydrate (CSH)
 - CA⁺⁺ + OH⁻ + soluble clay alumina -> Calcium Aluminate Hydrate (CAH)

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Cunningham Highway Freestone Creek Lime Stabilised Core

Project Aim

To assess and evaluate the alternative method of slaking quicklime by insitu wet mixing, rather than the conventional method of quicklime surface slaking prior to incorporation.

Benefits

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 Flinders Highway trial 2023

Challenges finding insitu slaking trial location

- X Truck stop 1: Within 10 metres of Gas pipeline.
- X Truck stop 2: Endangered grass species.
- X Truck stop 3: No black soil.

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 Truck stop 2 (18B 66.1km) and 5 (18C 26.0km)

- Lot 1:Hydratod lime as per MRTS07A
- Lot 2:
 - Quicklime as per MRTS07A
- Lot 3 (option 3A or 3B):
 - Quicklime trial refer to trial brief.

AustStab AGM | 24 July 2019

Laboratory phase 2019 to 2022

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 TMR Lab, Bulwer Island 2019

Linear relationship between change in temperature vs lime rate (%) (2019)

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Q = mc∆T

Q_{CaO}

• The energy released from the quicklime can be calculated.

ΔT=Q/mc

- Change in temperature can be determined from the mass of soil and water using specific heat capacity.
- Ratio of theoretical temperature vs actual temperature = % lime reacted.

$Q_{CaO} = Q_{\rm S} + Q_W$

 Ratio of energy released from the quicklime vs energy absorbed by the system = % lime reacted.

Comparison of three different lime source (2021)

Hand mixing % Quicklime reacted (20% OMC)

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Hand mixing:

- Results did not achieve the expected 86%.
- Results varied from 53% 83% reacted lime.
- Lime with a slower slaking rate (AS4489.3.1) calculated less than 45% of reacted lime in the sample.

Repeatability of the draft Q259A method

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Mechanical mixing

Using a lime with a fast slaking rate and 96.7% available Lime Index (ALI):

- results confirmed a linear relationship with each 2% addition of water
- results were repeatable between 93% 96% reacted lime for five samples.

Test Method field trial stage June 2022

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023 Flinders Highway trial 2022

Cloncurry truck stop field trial 2022

Flinders Highway trial 2022

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

Cloncurry truck stop field trial 2022

Flinders Highway trial 2022

Cloncurry truck stop field trial 2022

Flinders Highway trial 2022

Field trial June 2023

Flinders Highway trial 2023

Trial Sections

Control <i>MRTS07A</i> (50m)	AustStab (50m)	NACOE Trial (100m)
 Day 1 spread 7.5kg/m2 and surface slaked incorporation mix. Day 2 spread 7.5kg/m2 and surface slaked incorporation mix. final wet mix. 	 Day 1 spread 7.5kg/m2 and insitu slaking incorporation mix spread 7.5kg/m2 and insitu slaking incorporation mix final wet mix. 	 Day 1 spread 7.5kg/m2 and insitu slaking incorporation mix spread 7.5kg/m2 and insitu slaking incorporation mix. Day 2 final wet mix.
Australian Pavement Recycling and Stabilisation Conference		

Control Section Flinders Highway trial 2023

Australian Pavement Recycling and Stabilisation Conference Sustainable Pavements for Future Generations Pullman Albert Park, Melbourne • 22nd August 2023

AustStab Section

Flinders Highway trial 2023

NACoE Section

Flinders Highway trial 2023

Insitu lime slaking - Draft Q259A method

Initial temperature

Sample taken directly behind the stabiliser

Temperature rise is measured onsite

One day application vs Two day application

Sample 1 was sampled within the first 5-10m of lot.

99%

99%

5

- One day procedure 58% 79% reacted
 Two day procedure 76% 97% reacted (0-50m)
- Two day procedure 69% 99% reacted (50-100m)

Calculation Spreadsheets

Pre-Field testing result	5			
Maximum (1.69			
Available	92.2			
Insitu Mois	12.5			
Target Optin	16.0			
Lime spread rate / wat	er spread rate			
Lime ID				
	(kg/m3)	(%) and (time)		
Target Quicklime (kg/m ³)	15.0	3.55		
Drop 1 Quicklime (kg/m ³)	me (kg/m ³) 7.4			
Drop 2 Quicklime (kg/m ³)	op 2 Quicklime (kg/m ³) 7.4			
Total Quicklime (kg/m3)	14.8	3.50		

• Red text cells are automatically calculated

Data entry onsite includes:

- Pre-Field testing results
- Lime spread rate
- Sample identification details
- % Moisture added to site
- Depth of lot
- Mass of sub-sample
- Initial soil and water temperature
- Final slaked soil temperature

Bulk sample ID Bulk sample ID Bulk sample location Temperature probe X of target Quicklime added X water added to soil (Total) Moisture content of soil (Insitu + water added) Depth of sample portion Depth of sample portion Mass of test portion (soil and lime) Mass of test portion (soil and lime) Mass of test portion (soil and lime) Mass of soil calculated] Mass of water added on site in test portion (calculated) Mass of water added on site in test portion Total Moisture content of test portion Dry mass of soil (acludated) Initial soil temperature Initial soil temperature Time to mas heat rise Drames of soil of the set portion Dry mass of soil acludated Mass of soil calculated Mass of soil calculated Dry mass of soil and lime (calculated) Dry mass of soil calculated Dry mass o	X X M m M X ka ka ka ka ka ka ka ka	Sample 1 Insitu CB027.11 100% 3.0 15.5 0.250 0.200 4.379 EQUATIO 2.4 0.001 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 2.005 2.400	Sample 2 Insitu DL1 100% 3.0 15.5 0.250 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 15.5 15.5 10.1 10.1 10.1 10.0 2.4 0.0 10.1 10.0 2.4 10.0 10.0 10.0 10.0 2.0 10.0 10.0 10.0	Sample 3 Insitu DL2 100% 3.0 15.5 0.250 0.200 4.379 .CULATED FO 2.4 0.101 0.248 0.067 0.315 15.1%	Sample 4 Insitu DL3 1002 3.0 15.5 0.250 0.200 4.379 PR MASS OF 0 2.4 0.101 0.248 0.067 0.315 15.12 1.984	Sample 5 Insitu CB27.10 100% 3.0 15.5 0.250 0.200 4.379 2UICKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1%
Bulk sample location Temperature probe X draret Quicklime added X draret added to soil [Tota] Moisture content of soil (Insitu - water added) Depth of situ = stabilisation Depth of sample portion X lime based on depth of sample portion Mass of test portion [soil and lime] Mass of Quicklime in test portion [calculated] Mass of water added on site in test portion [calculated] Mass of water added on site in test portion Total Moisture content of test portion Ury mass of soil and lime [calculated] Mass of soli localulated] Initial soil temperature Initial water temperature Time to mas heat rise	× × × × × × × ka ka ka ka ka ka	Insitu CB027.11 1002 3.0 15.5 0.250 0.200 4.379 EQUATIO 2.4 0.007 0.315 15.12 1.984 1.984 2.085 2.400	Insitu DL1 1002 3.0 15.5 0.250 0.200 4.379 NS BACK CA 2.4 0.001 0.248 0.067 0.315 15.12 1.984 1.984	Insitu DL2 100× 3.0 15.5 0.250 0.250 0.200 4.379 .CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1× 1.984	Insitu DL3 1002 3.0 15.5 0.200 4.379 RF MASS OF (2.4 0.101 0.248 0.067 0.315 15.1% 1.984	Insitu CB27.10 100% 3.0 115.5 0.250 0.200 4.379 201CKLIME AN 0.248 0.067 0.315 15.1% 1.984
Temperature probe X of target Quicklime added X of target Quicklime added X bare added to soil (Total) Moisture content of soil (insitu • water added) Depth of site stabilisation Depth of sample portion X lime based on depth of sample portion Mass of test portion (soil and lime) Mass of test portion (soil and lime) Mass of hydroscopic water in test portion (calculated) Mass of varies added on site in test portion (calculated) Total Moisture content of test portion Dry mass of soil intest portion Dry mass of soil calculated) Mass of slot and lime (calculated) Mass of soil and lime (calculated) Mass of soil and lime (calculated) Dry mass of soil and lime (calculated) Mass of slot temperature Initial soil temperature Final soil temperature Time to masheat rise	X X X m m X ka ka ka ka ka ka ka ka	CB027.11 100% 3.0 15.5 0.250 0.200 0.200 4.379 EQUATIO 2.4 0.067 0.315 15.1% 1.984 1.984 1.984 1.984 2.085 2.400	DL1 100% 3.0 15.5 0.250 0.200 4.379 NS BACK CAI 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	DL2 100% 3.0 15.5 0.250 0.200 4.379 CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1%	DL3 100% 3.0 15.5 0.250 0.200 4.379 DR MASS OF (2.4 0.001 0.248 0.067 0.315 15.1%	CB27.10 100% 3.0 15.5 0.250 0.200 4.379 201CKLIME AN 2.4 0.001 0.248 0.067 0.315 15.1%
X of target Quicklime added X vater added to soil (Total) Moisture content of soil (insitu - water added) Depth of site stabilisation Depth of sample portion X lime based on site in test portion Y lime based on lime (calculated) X run mass of soil in test portion Initial soil temperature Initial soil temperature X lime based on	X X X X X Ka Ka Ka Ka Ka Ka Ka	1002 3.0 15.5 0.250 0.200 4.379 EQUATIO 2.4 0.007 0.315 15.12 1.984 1.984 1.984 2.085 2.400	100% 3.0 15.5 0.250 0.200 4.379 NS BACK CA 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	1002 3.0 15.5 0.250 0.200 4.379 c.ULATED FC 2.4 0.101 0.248 0.067 0.315 15.1%	1002 3.0 15.5 0.250 0.200 4.379 DR MASS OF C 2.4 0.101 0.248 0.067 0.315 15.1% 1.984	1007 3.0 15.5 0.250 0.200 4.379 2UICKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1% 1.984
Xi Water added to soil [Total] Moisture content of soil [insitu + water added] Depth of site stabilisation Depth of site stabilisation Xime based on depth of sample portion Xime based on depth of sample portion Mass of test portion (soil and lime) Mass of Quicklime in test portion (calculated) Mass of Quicklime in test portion (calculated) Mass of water added on site in test portion (calculated) Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Mass of soil and lime (calculated) Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Final soil temperature Time to mas heat rise	X X M M Ka Ka Ka Ka Ka Ka Ka	3.0 15.5 0.250 0.200 4.379 EQUATIO 2.4 0.007 0.315 15.1% 1.984 1.984 2.085 2.400	3.0 15.5 0.250 0.200 4.379 NS BACK CAI 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	3.0 15.5 0.250 0.200 4.379 CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	3.0 15.5 0.250 0.200 4.379 RF MASS OF (2.4 0.101 0.248 0.067 0.315 15.1% 1.984	3.0 15.5 0.250 0.200 4.379 201CKLIME AN 2.4 0.010 0.248 0.067 0.315 15.1% 1.984
Moisture content of soil (insitu - water added) Depth of site stabilisation Depth of sample portion X lime based on depth of sample portion Mass of test portion (sale lime) Mass of stept portion (sale lime) Mass of stept added on site in test portion (sale ulated) Mass of start added on site in test portion (sale ulated) Total Mass of soil in test portion Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil and lime (sale ulated) Mass of start added on site in test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil and lime (sale ulated) Mass of start added on site in test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil and lime (sale ulated) Mass of staked soil Initial soil temperature Final soil temperature Time to mas heat rise Description Dry mass of soli addimeerature Time to mas heat rise Description Dry mass of soli portion Dry mass of soli addimeerature Distal soli temperature Distal soli temperatu	m m X ka ka ka ka ka ka ka ka	15.5 0.250 0.200 4.379 EQUATIO 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 1.984 2.085 2.400	15.5 0.250 0.200 4.379 NS BACK CAI 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	15.5 0.250 0.200 4.379 CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1%	15.5 0.200 4.379 R MASS OF C 2.4 0.101 0.248 0.067 0.315 15.1% 1.984	15.5 0.200 4.379 201CKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1% 1.984
Depth of site stabilisation Depth of sample portion X lime based on depth of sample portion Mass of test portion (soil and lime) Mass of Quicklime in test portion (calculated) Mass of water added on site in test portion (calculated) Mass of water added on site in test portion (calculated) Total Moisture content of test portion Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Time to mas heat rise	m m ka ka ka ka ka ka ka ka	0.250 0.200 4.379 EQUATIO 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 1.984 2.085 2.400	0.250 0.200 4.379 NS BACK CAI 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	0.250 0.200 4.379 .CULATED FC 2.4 0.101 0.248 0.067 0.315 15.12	0.250 0.200 4.379 R MASS OF C 2.4 0.101 0.248 0.067 0.315 15.1%	0.250 0.200 4.379 20/CKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1% 1.984
Depth of same stabilisation Depth of same stabilisation % lime based on depth of sample portion Mass of test portion [soil and lime] Mass of Quicklime in test portion [calculated] Mass of water added on site in test portion [calculated] Mass of water added on site in test portion [calculated] Total Moisture content of test portion Dry mass of soil [calculated] Dry mass of soil [calculated] Thital soil temperature Final soil temperature Time to mas heat rise	ka ka ka ka ka ka ka ka ka	0.200 4.379 EQUATIO 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 2.400	0.200 4.379 NS BACK CA 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	0.200 4.379 CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1%	0.200 4.379 PR MASS OF (2.4 0.101 0.248 0.067 0.315 15.1%	0.200 4.379 2.4 0.101 0.248 0.067 0.315 15.1%
Zime based on depth of sample portion Mass of test portion (soli and lime) Mass of your solid and lime) Mass of hydroscopic water in test portion (calculated) Mass of water added on site in test portion (calculated) Total Moisture content of test portion Total Moisture content of test portion Dry mass of soil intest portion Dry mass of soil intest portion Dry mass of soil integrature Initial soil temperature Initial soil temperature Timal Soil temperature Time to masheat rise	ka ka ka ka ka ka ka ka	4.379 EQUATIO 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 2.085 2.400	4.379 NS BACK CAI 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	4.379 CULATED FC 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	4.379 PR MASS OF 0 2.4 0.101 0.248 0.067 0.315 15.1% 1.984	4.379 QUICKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1%
Mass of test portion (soil and lime) Mass of Quicklime in test portion (calculated) Mass of water added on site in test portion (calculated) Mass of water added on site in test portion (calculated) Total Mass of water in test portion Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Final soil temperature Time to mas heat rise	ka ka ka ka ka ka ka	EQUATIO 2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984 1.984 2.085 2.400	NS BACK CA 2.4 0.101 0.248 0.067 0.315 15.1% 1.51%	CULATED F0 2.4 0.101 0.248 0.067 0.315 15.1%	R MASS OF 0 2.4 0.101 0.248 0.067 0.315 15.1%	2UICKLIME AN 2.4 0.101 0.248 0.067 0.315 15.1%
Mass of test portion (soil and lime) Mass of Quicklime in test portion (calculated) Mass of quickscope water in test portion (calculated) Mass of water added on site in test portion (calculated) Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Dry mass of soil and lime (calculated) Initial soil temperature Initial water temperature Timal soil temperature Tima soi temperature	ka ka ka ka ka ka ka ka	2.4 0.101 0.248 0.067 0.315 15.12 1.984 1.984 2.085 2.400	2.4 0.101 0.248 0.067 0.315 15.1% 1.984 1.984	2.4 0.101 0.248 0.067 0.315 15.1%	2.4 0.101 0.248 0.067 0.315 15.1%	2.4 0.101 0.248 0.067 0.315 15.1%
Mass of Quicklime in test portion (calculated) Mass of water added on site in test portion (calculated) Total mass of water in test portion Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil (calculated) Dry mass of soil and time (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Time to mas heat rise	ka ka ka ka ka ka ka	0.101 0.248 0.067 0.315 15.1% 1.984 1.984 2.085 2.400	0.101 0.248 0.067 0.315 15.1% 1.984 1.984	0.101 0.248 0.067 0.315 15.1%	0.101 0.248 0.067 0.315 15.1%	0.101 0.248 0.067 0.315 15.1%
Mass of hugroscopio water in test portion (calculated) Mass of water added on site in test portion (calculated) Total Mass of water in test portion Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Dry mass of soil and lime (calculated) Initial soil temperature Initial water temperature Final soil temperature Time to mas heat rise	ka ka ka ka ka ka	0.248 0.067 0.315 15.1% 1.984 1.984 2.085 2.400	0.248 0.067 0.315 15.1% 1.984 1.984	0.248 0.067 0.315 15.1%	0.248 0.067 0.315 15.1%	0.248 0.067 0.315 15.1%
Mass of water added on site in test portion [calculated] Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil (calculated) Dry mass of soil and lime (calculated) Initial soit emperature Initial water temperature Time to mas heat rise	ka ka X ka ka ka	0.067 0.315 15.1% 1.984 1.984 2.085 2.400	0.067 0.315 15.12 1.984 1.984	0.067 0.315 15.1%	0.067 0.315 15.1%	0.067 0.315 15.1%
Total mass of water in test portion Total Moisture content of test portion Drg mass of soil in test portion Drg mass of soil and time (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Time to mas heat rise	ka % ka ka ka	0.315 15.1% 1.984 1.984 2.085 2.400	0.315 15.1% 1.984 1.984	0.315 15.1% 1.984	0.315 15.1% 1.984	0.315 15.1% 1.984
Total Moisture content of test portion Dry mass of soil in test portion Dry mass of soil and lime (calculated) Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Final soil temperature Time to mas heat rise	Ka ka ka ka	15.1% 1.984 1.984 2.085 2.400	15.1% 1.984 1.984	15.1% 1.984	15.1%	15.1%
Dry mass of soil in test portion Dry mass of soil (calculated) Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Time to mas heat rise Dreases test for a tables	ka ka ka	1.984 1.984 2.085 2.400	1.984 1.984	1.984	1.984	1.984
Dry mass of soil in test portion Dry mass of soil and time (calculated) Dry mass of soil and time (calculated) Mass of slaked soil Initial soil temperature Initial water temperature Time to mas heat rise	ka ka ka	1.984 1.984 2.085 2.400	1.984 1.984	1.984	1.984	1.984
Dry mass of soil (calculated) Dry mass of soil and lime (calculated) Mass of slaked soil Initial soil temperature Final soil temperature Time to max heat rise	ka ka ka	1.984 2.085 2.400	1.984	1994		
Dry mass of soil and time (calculated) Mass of staked soil Initial soil temperature Final soil temperature Time to mas heat rise	ka ka	2.085		1.301	1.984	1.984
Mass of slaked soil Initial soil temperature Final soil temperature Time to max heat rise	ka	2 400	2.085	2.085	2.085	2.085
Initial soil temperature Initial water temperature Final soil temperature Time to max heat rise			2.400	2.400	2.400	2.400
Initial sourcemperature Final soil temperature Time to max heat rise		017			017	017
Final soil temperature Time to max heat rise	•C	21.7	21.7	21.7	21.7	21.7
Time to max heat rise	•C	16.8	16.8	16.8	16.8	16.8
Time to max neat rise	•C	47.0	52.8	48.5	49.1	49.7
	Minutes	16	15	17	12	13
Change in sample temperature nom staking	'C[25.43	31.23	26.93	27.53	28.13
Theoretical Heat Hise						
Energy released by Quicklime (theoretical)	kJ/mole	105.440	105.440	105.440	105.440	105.440
Energy absorbed by water	kJ/mole	33.464	41.096	35.438	36.227	37.017
Energy absorbed by soil	kJ/mole	42.306	51.953	44.801	45.799	46.797
		75 770	00.040	00.000	00.000	00.014
Energy absorbed total	kJ/mole	75.770	93.049	80.239	82.026	83.814
Quicklime (theoretical)	~	72%	88%	76%	78%	79%
Theoretical heat rise	'c	35.47	35.47	35.47	35.47	35.47
Change in temperature of soil / Change in temperature theoretical		72%	88%	76%	78%	79%
Residual Energy of Quicklime	kJ	29.67	12.39	25.20	23.41	21.63
Residual Quicklime	ka	0.026	0.011	0.022	0.021	0.019
Residual Quicklime	q	26.12	10.91	22.19	20.61	19.04
Residual Quicklime / Mass of Quicklime in test portion (calculated)	%	26%	11%	22%	20%	19%
Moles CaO in test portion	moles	1.6553	1.6553	1.6553	1.6553	1.6553
Energy released by Quicklime (theoretical)	kJ	105.440	105.440	105.440	105.440	105.440
Theoretical water required to complete reaction	kg	0.030	0.030	0.030	0.030	0.030
Results						
Slaking efficiency (Value fro	m row 83)	72%	88%	76%	78%	79%
Average Slaking efficiency	(reacted)				78.7%	
% Measured heat rise (value fro	m row 85)	72%	88%	76%	78%	79%
Minimum % measure	d heat rise				71.7%	

Summary Spreadsheet

				Q259:	Slaking of Quid	klime work	sheet (dr	aft V1.4)				
				W	orksheet for Re	sidual Quic	klime - S	ummary				
Sample details								-				
Test Method:	Q259:	Slaking of Q	uicklime	(draft)						Tested by	RD, SV	
Sample ID	Sectio	on - Q259 tria	I-2 days	s						Date tested:	22/06/202	3
Client sample ID	Clone	urry - Julia Cr	rry - Julia Creek oil						Target Quicklime (%)		3.00	
vlaterial type	Black	soil					ALI (%)	92.2				
Location		0-50mt - Chainage (50mt) 71.790						Energy relea	sed for Quicklime	ed for Quicklime Reacted (Av)		
				days	hours			Heat ri	se for Quicklime	Reacted (Min)	86%	
Time for curing before fina	al wet pas	s (slaking)		day/s	17.0 hour/s				Result for Quick	dime Reacted	SLAKED	
Average	Minim	um				CB027.11	DL1	DL2	DL3	CB027.10		
9	6%		86%		Total slaking efficiency	86%	104%	99%	99%	95%		
					Total heat rise %	86%	104%	99%	99%	95%		
					%	Quicklime rea	cted					
			120%									
		-	100%		104%	00	×	000/				
		CTED		9.53	104%	99	%	99%	95%			
		MERE	80%	86%								
		JUICKL	60%									
		%	40%			Total slaking efficiency	(
			20%		=	- Total hest rise % - Minimum						
			0%		-	Average						
				1	2	3 SAMP	LES	4	5			
						5411						

RD, SV, DV, KL
24/00/2022
21/06/2023
3.00
3.25
85%
72%
ADD MORE WATER

Considerations for test method Q259A

- Slow reacting lime does not reach the same heat rise as fast reacting:
 - slaking rate needs to be considered
 - more research required into a correlation factor.
- Agreed % for slaked lime yet to be determined:
 - currently set to more than 90% average and 80% minimum.
- Soil Temperature initial and final temperature is critical
 - 2°C missed temperature rise equals 6-7% slaking.

Flinders Highway trial 2023

Observations and recommendations

- Trapped heat appeared to cause cracking in both June 2022 and June 2023 trials.
- Final wet mix on separate day releases heat.

Seeking trial in high lime percentage stabilisation project.

Acknowledgements

- NACoE Project P107: Undertaken by ARRB and TMR through the National Asset Centre of Excellence (NACoE) Program.
- TMR Bulwer Island Laboratory and Cloncurry Laboratory undertook the testing. (Robyn Devitt and her team, Brian Lowe, Liying Shao).
- North West District, TMR (Chris Pyne and Upali Adikaram).
- Koppens Stabilising / Koppens Contracting.
- Cement Australia (Paul Ribinsky).
- ARRB (Justin Nicols and Satheeban Vaikunthanathan).
- Jothi Ramanujam and Peter Evans.

