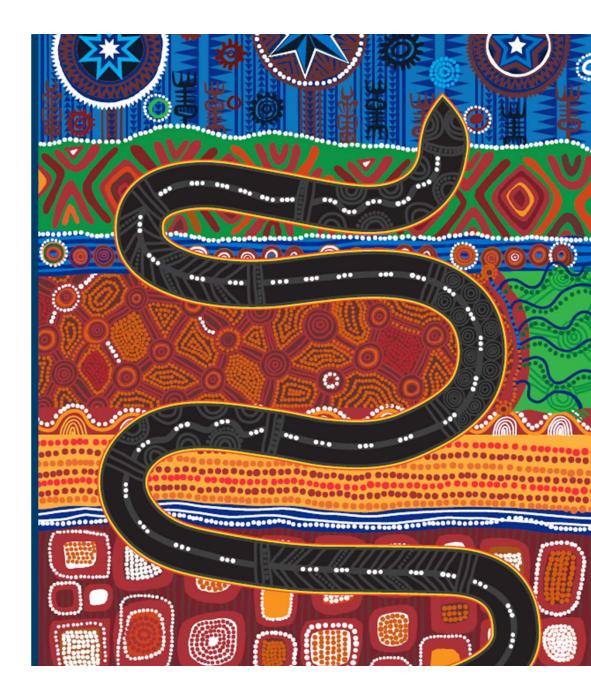
Effects of '*hot storage and duration*' on class 170 binder properties and foamed bitumen stabilisation performance.

Damian Volker, Principal Engineer

Department of Transport and Main Roads


Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads

Novotel Brighton Beach, Sydney • 10th August 2022

Traditional Owners Acknowledgement

TMR Artwork storyline Travelling by Gilimbaa.

About us

Type footer details here | 3 August 2022

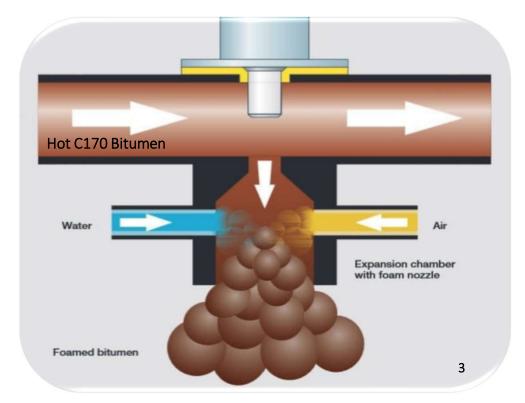
Effects of '*hot storage and duration*' on class 170 binder properties and foamed bitumen stabilisation performance

Refinery

Bulk bitumen tanker leaving refinery (point of release)¹.

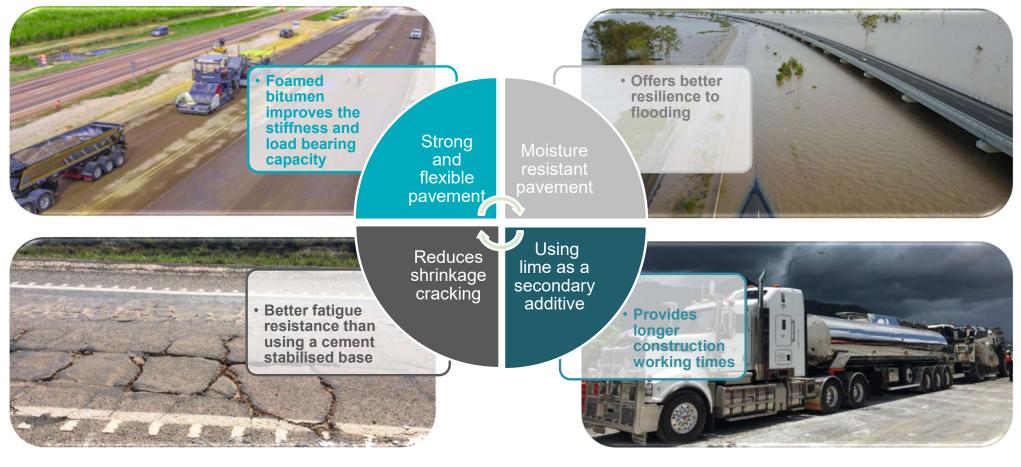
Bulk bitumen tankers can travel up to 700km for Foamed Bitumen projects in Queensland.

Foamed Bitumen Road Stabilisation


Between the 'refinery' and the jobsite 'point of delivery', class 170 bitumen used in foamed bitumen stabilisation can be exposed to temperatures above maximum specified 190°C; or held at 190°C for multiple days prior to use (incorporation). What are the impacts on foamed bitumen performance/pavement life? Hot Storage: C170 Bitumen heated to 185°C (control sample), over-heated to 200°C, 210°C and 220°C.

Duration: C170 Bitumen maintained at 185°C for prolonged periods 0 day (control sample), 2, 4, 6 & 8 days.

What is Foamed Bitumen Road Stabilisation?



Benefits of Foamed Bitumen pavements

Techniques: Insitu and Exsitu (plant-mixed) foamed bitumen

1. Insitu Foamed Bitumen: In-place recycling utilising existing pavement base materials

2. Exsitu: Plant-Mixed Foamed Bitumen produced in a pugmill (located at a quarry) and delivered to site in trucks

Problem formulation

MRTS07C and MRTS09 specifications:

'The bitumen shall be incorporated at a temperature between 180°C and 190°C. Bitumen temperature shall not fall below 170°C throughout the bitumen incorporation process'.

MRTS17 Bitumen Specification referenced Advisory Note 7

AAPA Advisory Note 7 - Guide to heating and storage.

Binder Supplier	Sealing Binder	Austroads binder class (AG:PT/T190)	Recommended spraying temperature range (°C) (Note 1)	Recommended maximum holding time at spraying temperature (Notes 2 & 3)	Recommended medium-term storage temperature (°C)	Recommended medium-term storage time (Notes 2 & 3)
PAVING GRADE BITUMEN AS2008 bitumen grades	Class 170		175 - 185	7 days	130 - 150	30 days

Notes:

- Adjustments of the spraying temperature may be required to allow for prevailing conditions, such as pavement temperature and wind speed, but should not exceed the recommended maximum spraying temperature. The listed temperature ranges apply to the binder before the addition of cutter or additive. For further information, refer to the Austroads Bituminous Materials Safety Guide.
- 2. All polymer modified binders must be stirred prior to use and regularly circulated during storage dur to the possibility of polymer segregation. Refer to binder manufacturer/supplier for advice on storage of binders for periods longer than shown.
- 3. Longer storage times apply at lower storage temperatures, shorter storage times apply at higher storage temperatures.

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Problem - circumstances investigated

Project 1 (2018): Insitu foamed bitumen project

Bitumen arrived onsite at 200°C.

Background: Project was 700km from the refinery and loads were arriving the previous evening for works the following day. The bitumen transport operator suggested it was common practise to heat the bitumen as high as 220°C during the night and allow the bitumen to reduce in temperature to the required 180-190°C at point of delivery.

Project 2 (2018): Exsitu plant-mixed foamed bitumen project

Due to project delays, Class 170 bitumen was held in an auxiliary bitumen tank at 185°C for >7 days prior to manufacture of the foamed bitumen mix.

Background: Electric elements in auxiliary storage can maintain a high temperature of 180-190°C. However, heating from a lower temperature to the required 180-190°C is slow (approximately 1°C per hour).

Literature review – Class 170 binder

Binder test results obtained for C170 bitumen after different storage times at 180°C.

Property		AS 2008 specification for C170 bitumen ⁽¹⁾			
Storage time at 180 °C (days)	0	2	5	6	
Viscosity at 165 °C (Pa s)	0.09	-		0.11	-
Torsional recovery at 25 °C (%)	2	-	-	2	-
Softening point (°C)	47.0	48.0	49.0	49.5	-
Consistency at 60 °C – mould B (Pa s)	178	187	222	244	-
Consistency 6% at 60 °C – mould B (Pa s)	165	172	203	227	<u> </u>
Stiffness at 25 °C (kPa)	12	-	(H	23	
Stiffness at 15 °C (kPa)	150	-	-	> 187 ⁽²⁾	1751
Viscosity at 60 °C (Pa s)	170	174	232	234	140-200
Penetration at 25 °C (0.1 mm)	71	-		57	62 min.

1 Standards Australia AS 2008-2013.

Austroads 2014, 'Technical report ap-t271-14: Effects of Hot Storage on Polymer Modified Binder Properties and Field Performance', Sydney, Austroads Pty Ltd

Control Sample Time Visc135 Visc60 Pen25 72 0 hours 167 0.510 5 hours 176 0.370 62 24 hours 189 0.510 55 3 days 226 49 0.410 8 days 0.500 23 343 12 15 days 762 0.633 19 days 958 0.833 9 26 days 1302 1.250 8

Emery, S, O'Connell, J & White, L 2004, 'Monitoring bitumen quality from refinery to pavement'

Ageing of class 170 small samples at 163°C.

Literature review – Class 170 binder for foamed bitumen

Technical Guideline 2 (TG2 South Africa)

Indicates that bitumen should never be heated above 195°C. The normal bitumen temperature for foaming is recommended at 175°C and must always be above 160°C to provide sufficient heat energy for the water to change state and create foam.

Asphalt Academy 2009, 'A guideline for the design and construction of bitumen emulsion and foamed bitumen stabilised materials', (TG2).

Unlike the NZ specification, the South African TG2 fails to adequately address a maximum storage duration for the bitumen binder at elevated temperatures.

Material	Maximum storage temperature (°C)		Application tem (within 2 hou	
	>24 hours	<24 hours	Minimum	Maximum
80/100 Pen grade	125	175	175	190

Foamed bitumen temperature limits for storage and application of bitumen in NZ.

Transit New Zealand 2008, 'Specification for in-situ stabilisation of modified pavement layers', (TNZ B/5)

Literature review – foaming properties

Elei	ments	Austroads specification	South African specification (TG2 2009)	TMR specification	New Zealand specification
Foaming	Expansion rate	≥ 15	8 - 12	≥ 10	≥ 10
properties	Half time (seconds)	30-45	≥ 6	≥ 20	6

Comparison of foamed bitumen specification foaming properties.

Hard bitumen should be avoided due to the poor quality of foam produced, which leads to insufficient dispersion of binder in the FBS mixture.

Wirtgen GmbH 2012, 'Wirtgen cold recycling technology', Wirtgen Group, Windhagen, Germany.

Jenkins theoretical explanation into the physics of bitumen foamability, the energy transfer when using a stiffer binder reduces the explosive expansion from the generation of steam, effecting surface tension of the bitumen film.

Jenkins, K, Van de Ven, M & De Groot, J 1999, 'Characterisation of foamed bitumen'

Literature review – foamed bitumen performance

Research gap identified that warranted the investigation into the:

Effects of 'hot storage and duration' on class 170 binder properties and foamed bitumen stabilisation performance.

Thesis testing strategy

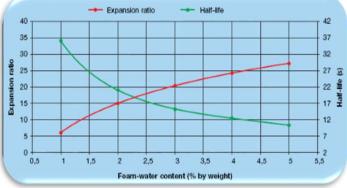
Thesis investigation split into two parts

1. Hot Storage: 185°C, 200°C, 210°C, 220°C


2. Duration: @ 185°C 0, 2, 4, 6 and 8 days

Materials

Laboratory bitumen heating, binder properties testing and Foamed bitumen mix performance testing


Bitumen heating regime

Bitumen viscosity

Foaming properties

(Expansion Ratio and Half-life)

Foamed bitumen equipment

Foamed bitumen mix

Compacted specimen

Vacuum saturation (soaked)

Indirect Tensile Resilient Modulus (ITRM)

Damian Volker S268296

testing

Foamed Bitumen

5 of 10

Heating simulations – Hot storage: 185°C, 200°C, 210°C, 220°C

1. Hot Storage: 185°C, 200°C, 210°C, 220°C

- Four separate tins
- 8 Litres C170 in a 10L tin (20% air)
- Lids on
- Bitumen was initially heated overnight at 105°C
- Elevated temperature maintained for 1 hour
- C170 cooled to 185°C then transferred to WLB10s kettle for sampling and foaming at 185°C.

Oven heating of Class 170 bitumen simulations - temperatures exceeding maximum specified 190°C (up to 220°C).

Reference 185°C	Oven heated @ 200 °C	Oven heated @ 210 °C	Oven heated @ 220 °C
Control sample	and maintain for 1 hour	and maintain for 1 hour	and maintain for 1 hour
Pour into Wirtgen	Pour into Wirtgen	Pour into Wirtgen	Pour into Wirtgen
WLB10S kettle and	WLB10S kettle and	WLB10S kettle and	WLB10S kettle and
circulated until 185°C	circulated until 185°C	circulated until 185°C	circulated until 185°C
Sample 125ml for	Sample 125ml for	Sample 125ml for	Sample 125ml for
viscosity (AS2341.2)	viscosity (AS2341.2)	viscosity (AS2341.2)	viscosity (AS2341.2)
Add 0.5% foaming agent and circulate @ 185°C	Add 0.5% foaming agent and circulate @ 185°C	Add 0.5% foaming agent and circulate @ 185°C	Add 0.5% foaming agent and circulate @ 185°C
Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C	Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C	Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C	Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C
Preparation and	Preparation and	Preparation and	Preparation and
Compaction of foamed	Compaction of foamed	Compaction of foamed	Compaction of foamed
bitumen stabilised	bitumen stabilised	bitumen stabilised	bitumen stabilised
material (Q138) tested	material (Q138) tested	material (Q138) tested	material (Q138) tested @
@ 185°C	@ 185°C	@ 185°C	185°C

Control is the Class 170 binder at 185 °C (0 days)

Heating simulations – Duration: @ 185°C 0, 2, 4, 6 and 8 days

2. Duration: @ 185°C 0, 2, 4, 6 and 8 days

- Four separate tins
- 8 Litres C170 in a 10L tin (20% air)
- Lids on
- Stirred daily
- Sampled and foamed at 185°C.

Oven heating of Class 170 bitumen simulations - temperatures maintained at 185°C for durations of time up to 8 days (2, 4, 6 and 8 days).

Reference 185ºC Control sample (same control sample as table 9)	8 Litres C170 oven heated @ 185°C (lid on) and maintained for 2 days	8 Litres C170 oven heated @ 185°C (lid on) and maintained for 4 days	8 Litres C170 oven heated @ 185°C (lid on) and maintained for 6 days	8 Litres C170 oven heated @ 185°C (lid on) and maintained for 8 days
-	Stir daily	Stir daily	Stir daily	Stir daily
Pour into Wirtgen	Pour into Wirtgen	Pour into Wirtgen	Pour into Wirtgen	Pour into Wirtgen
WLB10S kettle	WLB10S kettle	WLB10S kettle	WLB10S kettle	WLB10S kettle
Sample 125ml for	Sample 125ml for	Sample 125ml for	Sample 125ml for	Sample 125ml for
viscosity	viscosity	viscosity	viscosity	viscosity
(AS2341.2)	(AS2341.2)	(AS2341.2)	(AS2341.2)	(AS2341.2)
Circulate in	Circulate in	Circulate in	Circulate in	Circulate in
Wirtgen WLB10S	Wirtgen WLB10S	Wirtgen WLB10S	Wirtgen WLB10S	Wirtgen WLB10S
kettle until 185ºC	kettle until 185°C	kettle until 185°C	kettle until 185°C	kettle until 185°C
Add 0.5% foaming agent and circulate	Add 0.5% foaming agent and circulate	Add 0.5% foaming agent and circulate	Add 0.5% foaming agent and circulate	Add 0.5% foaming agent and circulate
Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C	Expansion Ratio and Half Life foaming properties test (AGTP301) @ 185°C			
Preparation and	Preparation and	Preparation and	Preparation and	Preparation and
Compaction of	Compaction of	Compaction of	Compaction of	Compaction of
foamed bitumen	foamed bitumen	foamed bitumen	foamed bitumen	foamed bitumen
stabilised material	stabilised material	stabilised material	stabilised material	stabilised material
(Q138) tested @	(Q138) tested @	(Q138) tested @	(Q138) tested @	(Q138) tested @
185°C	185°C	185°C	185°C	185°C

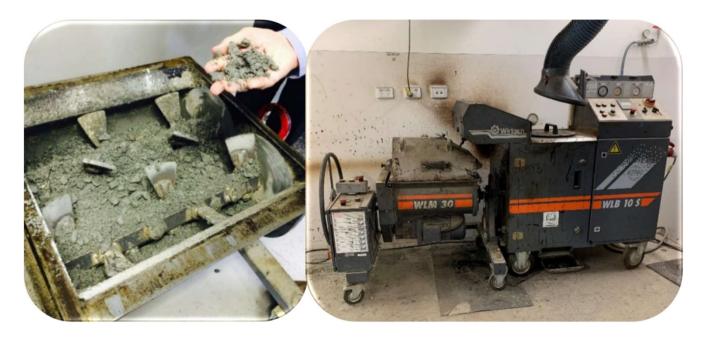
Control is the Class 170 binder at 185 °C at 0 days.

Testing - bitumen viscosity (AS 2341.2)

Bitumen viscosity limits at 60°C between 140 Pa.s and 200 Pa.s (MRTS17 2017).

Property	Test Method	Unit	Class 170	
			Min	Max
Viscosity at 60°C	Q330 or AS 2341.2	Pa.s	140	200

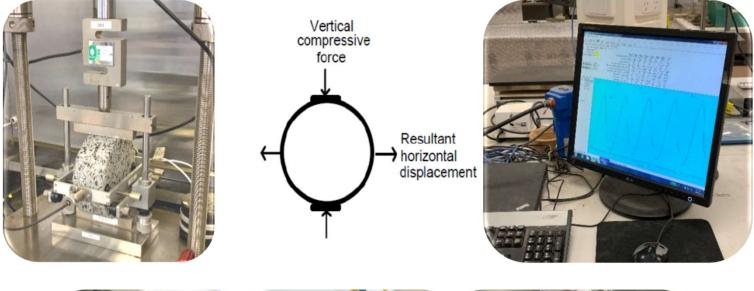
Testing - foaming properties (AGPT301)



Manufacture of 8 foamed bitumen mix designs – (Q138)

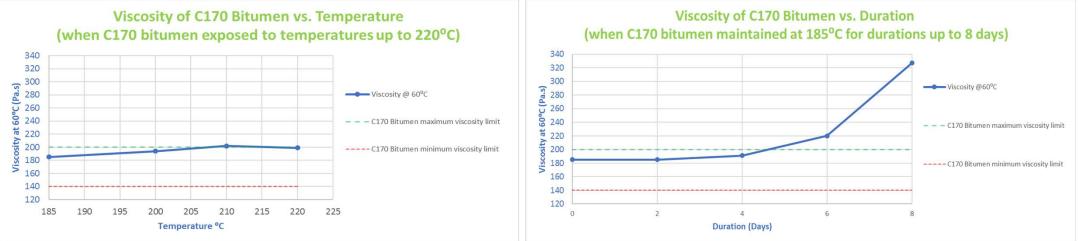
- Karreman Quarry type 2.1 gravel
- 3% Bitumen
- 2% Hydrated lime
 - Available lime index 94.5%
- 0.5% foaming agent
- Target 70% of OMC (Optimum Moisture Content)
- Foaming water 12 litres per hour (3.3%)

Compaction and curing of the 8 mix designs – (Q138)



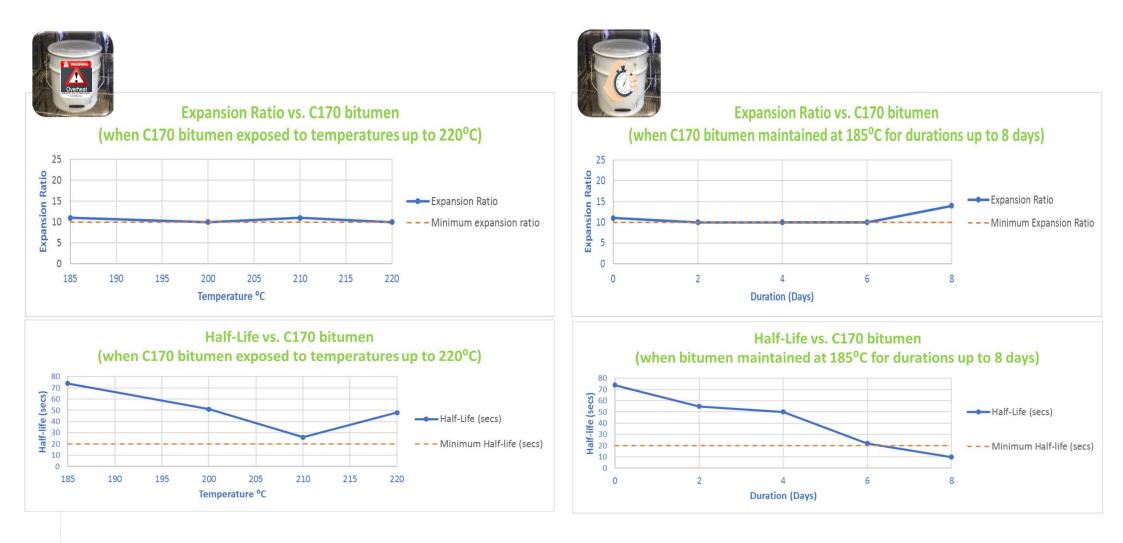
Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Testing - Indirect tensile resilient modulus – (Q139)


Summary of test results

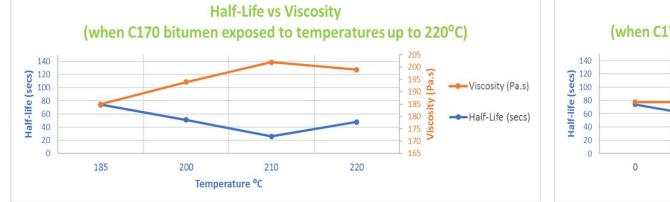
Article Number	BS18/186 A	BS18/186 B	BS18/186 C	BS18/186 D	BS18/186 E	BS18/186 F	BS18/186 G	BS18/186 H	
Bitumen	Reference	Heated	Heated	Heated	Maintain	Maintain	Maintain	Maintain	
Heating	185 ⁰ C	200 °C	210 °C	220 °C for	@ 185°C	@ 185°C	@ 185°C	@ 185 °C	
Test	(Control)	for 1	for 1	1 hour,	for 2	for 4	for 6	for 8	
Parameters		hour,	hour,	Foamed	days,	days,	days,	days,	
		Foamed	Foamed	at 185 ⁰ C	Foamed	Foamed	Foamed	Foamed	
		at 185 °C	at 185 °C		at 185 °C	at 185 °C	at 185 °C	at 185 °C	
Q142A - MDR		2.191 t/m³ @ 8.1 %							
AS4489.6.1 -				94.5	0 %				
Lime Index C170 Bitumen				3 :	2/				
				2					
Hydrated Lime	0500	2540	2225			2247	0.070	0704	
Q139 – 3-day	3633	3510	3336	3052	3555	3217	3372	2781	
cured (Dry)	3460	3552	3427	3194	3590	3191	3230	2517	
(MPa)	3232	3544	3408	3274	3869	3414	3586	2525	
	-	3679	3376	3208	3692	3400	3255	3020	
Average	3442	3571	3387	3182	3677	3306	3361	2711	
Q139 – Soaked	1903	1675	1648	1471	2135	1595	1651	1314	
after 3-day	1920	1692	1801	1496	1695	1660	1587	1464	
cured	1915	1676	1703	1551	2207	1458	1712	1346	
(MPa)	-	1747	1673	1518	2275	1637	1634	1630	
Average	1913	1698	1706	1509	2206	1588	1646	1439	
Retained	52	48	49	48	60	50	49	47	
Modulus	55	48	53	47	47	52	49	58	
(%)	59	47	50	47	57	43	48	53	
	-	47	50	47	62	48	50	54	
Average	56	48	50	47	60	48	49	53	
Q147B -	2.23	2.23	2.22	2.22	2.24	2.23	2.24	2.23	
Compacted Dry	2.24	2.23	2.23	2.24	2.23	2.23	2.23	2.23	
Density (t/m³)	2.24	2.22	2.22	2.24	2.23	2.23	2.24	2.22	
	-	2.23	2.22	2.23	2.24	2.24	2.24	2.22	
Average	2.24	2.23	2.22	2.23	2.24	2.23	2.24	2.23	
(%) Target	70	70	70	70	70	70	70	70	
moisture ratio Moisture ratio	70	70	70	70	70	70	70	70	
achieved (%)	69.1	67.9	69.1	67.9	69.1	65.4	67.9	67.9	
acineved [26]	03.1	2		cks - PUMA			07.5	07.5	
Target Water	2.2	3.3					2.2	2.2	
Target Water Content %	3.3	5.5	3.3	3.3	3.3	3.3	3.3	3.3	
Interfoam (%)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
			0.5	0.5	0.5	-	0.5		
Water (I/h)	12 86	12 76	12 87	12 82	12 80	12 78	12 82	12 110	
Expansion (mm)	00	76	6/	62	80	78	62	110	
Half Life (s)	74	51	26	48	55	50	22	10	
Expansion	11	10	11	48	10	10	10	10	
Ratio	11	10	11	10	10	10	10	14	
Natio		-	Viscosity Ch	ecks - PUMA	C170				
Article #	8518/221-5	BS18/221-8	BS18/221-10	BS18/221-6	BS18/221-3	BS18/221-9	BS18/221-4	BS18/221-7	
Article # AS2341.2 -						All the second s			
A52341.2 -	185	194	202	199	185	191	220	327	
Viscosity (Pa.s)									

Laboratory test results – viscosity (at 60°C)

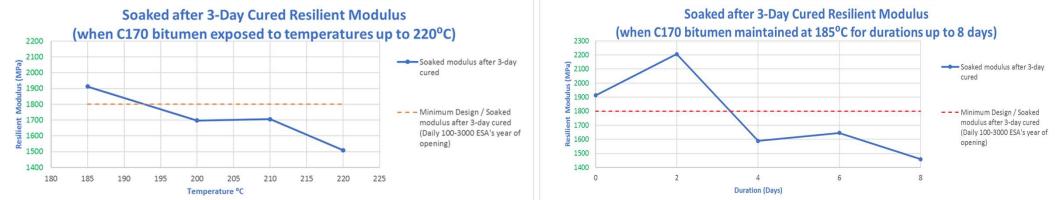


Bitumen viscosity limits at 60°C between 140 Pa.s and 200 Pa.s (MRTS17 2017).

Property	Test Method	Unit	Class 170		
			Min	Max	
Viscosity at 60°C	Q330 or AS 2341.2	Pa.s	140	200	


Laboratory test results – foaming properties

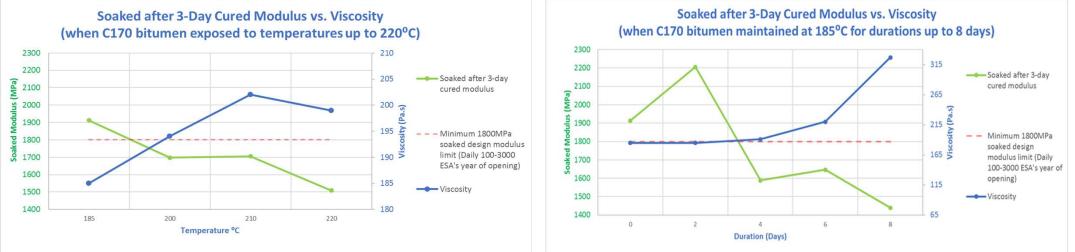
Laboratory test results – viscosity vs half-life



Duration (Days)

Laboratory test results – Viscosity vs Soaked after 3-day cured modulus

Cured resilient modulus mix design limits for foamed bitumen stabilised materials.


Average daily ESA in design year of opening	Minimum '3-days cured' modulus (MPa)	Minimum 'soaked after 3-days cured' modulus (MPa)	Minimum retained modulus ¹
< 100	2500	1500	0.4
100 to ≤ 3000	3000	1800	0.45
> 3000	4000	2000	0.5

Note 1: Retained modulus ratio = 'soaked after cured' modulus divided by the 'cured' modulus.

Laboratory test results – Viscosity vs Soaked after 3-day cured modulus

Analysis approach - effect on pavement life

- Reduction in pavement design life (in years)
- Required layer thickness compensation to meet design life (in mm), and
- Additional costs of FBS material for layer thickness compensation:
 - IFBS (in \$/m²)
 - PMFBS (in \$/m³)

Effect on pavement life – Traffic and pavement configuration

	10 years	20 years	30 years	40 years	Damage Index	Value
Not	2.45E+06	5.75E+06	1.02E+07	1.61E+07	NHVAG	2.800
DESA	2.21E+06	5.18E+06	9.17E+06	1.45E+07	ESA/HVAG	0.900
DSAR5	2.43E+06	5.70E+06	1.01E+07	1.60E+07	ESA/HV	2.500
DSAR7	3.54E+06	8.29E+06	1.47E+07	2.33E+07	SAR5/ESA	1.100
DSAR12	2.65E+07	6.21E+07	1.10E+08	1.74E+08	SAR7/ESA	1.600
Daily ESA in	design lane at o	pening		528	SAR12/ESA	12.000

Summary of results for design traffic periods and Daily ESA for design year of opening.

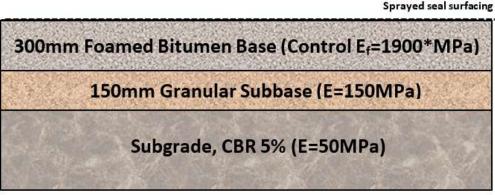
Where

 N_{DT} = Cumulative number of heavy vehicle axle groups over the design period

DESA = Design Equivalent Standard Axles (Design Traffic)

DSAR5 = Design Standard Axle Repetitions (fatigue of asphalt)

DSAR7 = Design Standard Axle Repetitions (rutting and shape loss)

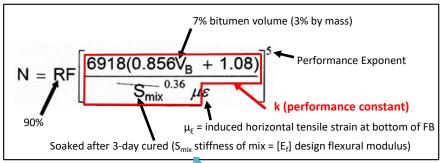

DSAR12 = Design Standard Axle Repetitions (fatigue of cemented materials)

N_{HVAG} = Average number of axle groups per heavy vehicle

HVAG = Heavy Vehicle Axle Groups

ESA = Equivalent Standard Axle

HV = Heavy vehicle


Layer configuration for pavement design life analysis.

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Structural pavement design inputs for foamed bitumen

(1900MPa)

Sample ID	Re	Retained Modulus (%)					
	Initial	3 day cured	3 day soaked	3 day			
	448	3633	1903	52			
DU 1004 0122 CO1	470	3460	1920	55			
BIL18W-0133-S01	393	3232	1915	59			
Average	437	3442	1913	56			
Date tested	27/08/2018	30/08/2018					

E_f = soaked modulus from **Q139** test results

Pavement design modelling software (CIRCLY 6.0) was used to analyse all the modulus test results data to assess the impacts on pavement life.

Cured modulus mix design limits for foamed bitumen stabilised materials

Average daily ESA in design year of opening	Minimum '3-days cured' modulus (MPa)	Minimum 'soaked after 3-days cured' modulus (MPa)	Minimum retained modulus ¹		
< 100	2500	1500	0.4		
100 to ≤ 3000	3000	1800	0.45		
> 3000	4000	2000	0.5		

Note 1: Retained modulus ratio = 'soaked after cured' modulus divided by the 'cured' modulus.

Effect on pavement life – Adopted design moduli and inputs

Summary of temperatures for 'hot storage' and 'duration' vs. 'Soaked after 3-day cured' modulus values for pavement life analysis.

Parameter	Temperature	Duration	Mean 'Soaked after 3-Day Cured' Design Modulus (MPa)	Adopted design flexural modulus [E _i] for the pavement life analysis (MPa)
	185 °C	1 hour	1913	1900
Hot	(Control*)			(Benchmark)
storage	200 °C	1 hour	1698	1700
	210 °C	1 hour	1706	1700
	220 °C	1 hour	1509	1500
	185 °C	1 hour	1913	1900
		(Control*)		(Benchmark)
	185 °C	2 days	2206	2200
Duration	185 °C	4 days	1588	1600
	185 °C	6 days	1646	1650
	185 °C	8 days	1439	1450

CIRCLY inputs: k Factors, Poisson Ratio, Performance Exponent, Pavement Temperature and Traffic Multipliers.

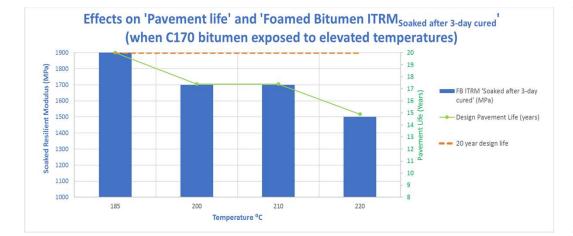
Binder Volume (%)	Adopted Foamed Bitumen Design Moduli (MPa)	*k Factors for CIRCLY Inputs	Poisson's Ratio	Performance Exponent	WMAPT (°C)	Traffic multiplier Asphalt / FB	Traffic multiplier Subgrade	
7	1450	0.003560	0.40	5.00	32.0	1.1	1.6	
7	1500	0.003517	0.40	5.00	32.0	1.1	1.6	
7	1600	0.003436	0.40	5.00	32.0	1.1	1.6	
7	1650	0.003398	0.40	5.00	32.0	1.1	1.6	
7	1700	0.003362	0.40	5.00	32.0	1.1	1.6	
7	1900	0.003230	0.40	5.00	32.0	1.1	1.6	
7	2200	0.003064	0.40	5.00	32.0	1.1	1.6	

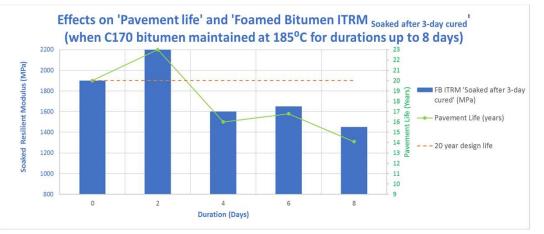
*k factors calculated from volume of bitumen (V_B) and adopted FB design moduli (from 'soaked after 3-day cured' test results).

*Same sample represented twice (control).

Effect on pavement – Life in years

Effects of hot storage and duration on foamed bitumen stabilisation performance (Allowable loading and Pavement life).

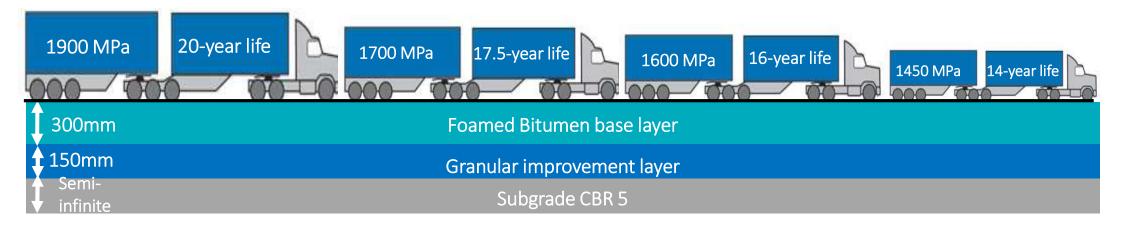

Parameter	Temp. (°C)	Duration	Foamed bitumen Thickness (mm)	Design Flexural Modulus [E _l] (MPa)	Cumulative Damage Factor (CDF)	Allowable Loading (DESA)	Pavement life (years)	Effects or pavemen life (years)
	185* (control)	1 hour	300	1900	1.93E-07	5.18E+06	20.0	0.0
Hot	200	1 hour	300	1700	2.32E-07	4.31E+06	17.4	-2.6
Storage	210	1 hour	300	1700	2.32E-07	4.31E+06	17.4	-2.6
	220	1 hour	300	1500	2.85E-07	3.51E+06	14.9	-5.1
Duration	185	1 hour (*control)	300	1900	1.93E-07	5.18E+06	20.0	0.0
	185	2	300	2200	1.49E-07	6.71E+06	23.2	3.2
	185	4	300	1600	2.57E-07	3.89E+06	16.0	-4.0
	185	6	300	1650	2.44E-07	4.10E+06	16.8	-3.2
	185	8	300	1450	3.01E-07	3.32E+06	14.1	-5.9


*Same sample represented twice (control).

Effect on pavement life

Effect on pavement life – Costs

Cost[#] of layer thickness compensation for structurally inadequate foamed bitumen stabilisation.

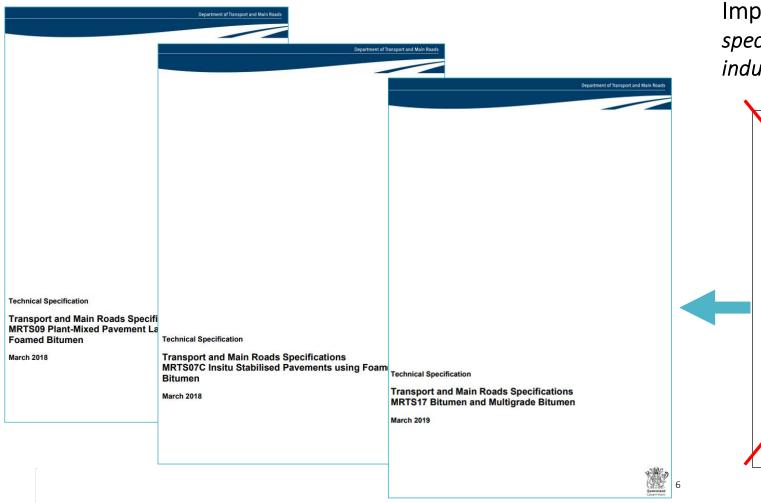


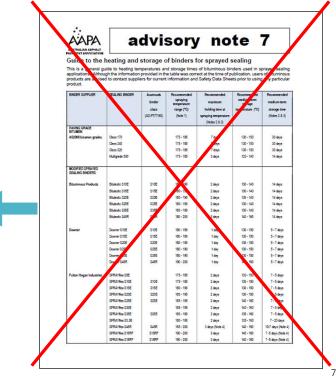
Parameter	Temperature (°C)	Duration	Foarned bitumen Thickness (mm)	Design Modulus [E _f] (MPa)	Cumulative Damage Factor (CDF)	Allowable Loading (DESA)	Thickness required to meet 20 year life (mm)	Cost increase per m ² of insitu foamed bitumen for thickness compensation (\$/m ²)	Cost increase per m ³ exsitu foamed bturnen for thickness compensation (\$/m ³)
Hot Storage	185* (control)	1 hour	300	1900	1.93E-07	5.18E+06	300	0.0	0.0
	200	1 hour	300	1700	2.32E-07	4.31E+06	309	1.8	7.5
	210	1 hour	300	1700	2.32E-07	4.31E+06	309	1.8	7.5
	220	1 hour	300	1500	2.85E-07	3.51E+06	317	3.4	14.2
Duration	185	1 hour (*control)	300	1900	1.93E-07	5.18E+06	300	0.0	0.0
	185	2	300	2200	1.49E-07	6.71E+06	290	-2.0	-8.3
	185	4	300	1600	2.57E-07	3.89E+06	312	2.4	10.0
	185	6	300	1650	2.44E-07	4.10E+06	310	2.0	8.3
	185	8	300	1450	3.01E-07	3.32E+06	319	3.8	15.8

Note[#] Foamed bitumen costs were selected from a range of rates provided in the Stabilisation

Practices in Queensland (ARRB, 2015). \$60 per m² (insitu - existing road material) and \$250 per m³ (plant mixed – new quarry material) was used for the above assessment.

Discussion - Summary




As bitumen '*hot storage*' temperatures and '*durations*' increase, Indirect Tensile Resilient Modulus (in MPa) decrease, and pavement life (in years) significantly declines.

Impacts are up to 30% reduction in pavement life from a 20-year design (14 years instead of 20 years). A 6 year loss of pavement life is not acceptable.

Recommendations

Improvements needed: *Technical specifications, governance, and industry bitumen heating practices.*

39

Recommendations adopted by TMR in specifications

Department of Transport and Main F

Technical Specification

Transport and Main Roads Specifications MRTS07C Insitu Stabilised Pavements using Foamed Bitumen

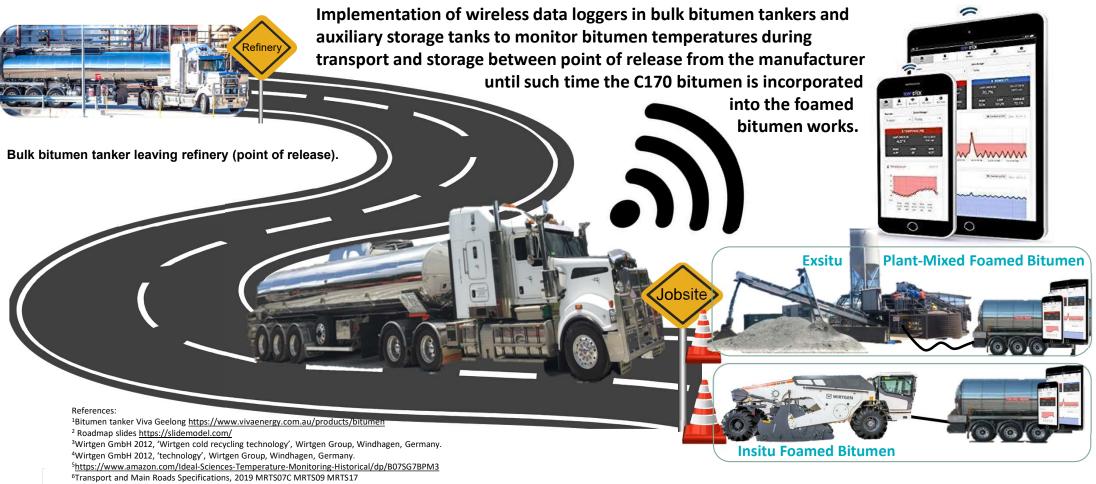
July 2022

Remain Unchanged

The bitumen incorporation shall commence at a temperature between 180°C and 190°C. Bitumen temperature shall not fall below 170°C throughout the bitumen incorporation process.

Adopted

The total time at which the Class 170 bitumen shall be held in the bitumen tanker (or onsite bitumen storage container) at foaming temperature (170°C to 190°C refer to Clause 8.8.5), shall be no greater than 72 hours.


Technical Specification

Transport and Main Roads Specifications MRTS09 Plant-Mixed Foamed Bitumen Stabilised Pavements

July 2022

Future research, development and implementation considerations

- ⁷Australian Asphalt Pavement Association 2016, Advisory note 7: Guide to the heating and storage of binders for sprayed sealing. ⁸https://www.amazon.com/Ideal-Sciences-Temperature-Monitoring-Historical/dp/B07SG7BPM3
- All other photos, charts and wording produced by author.
- 41

Thank you and stay connected

@TMRQld

Department of Transport and Main Roads

TMRQld

13 QGOV (13 74 68) www.tmr.qld.gov.au | www.qld.gov.au