Pavement Rehabilitation in Campbelltown – Transition to Circular Economy

Mahbub Hossain, Strategic Assets Coordinator

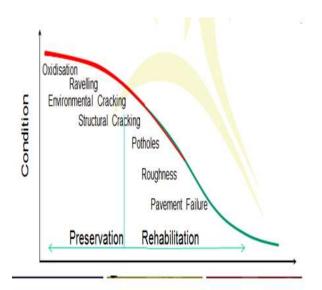
BE(Civil), M.Sc (Engineering) MIEA(Aust)

Campbelltown City Council

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads

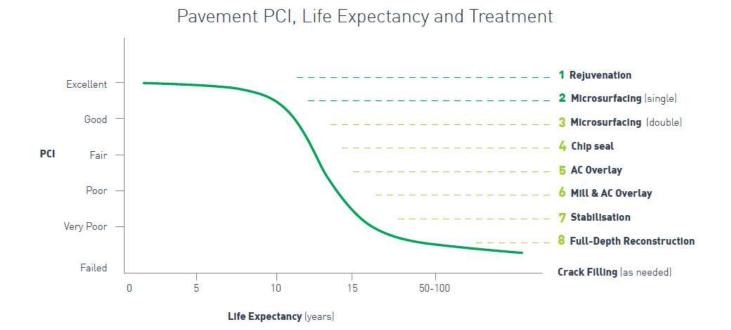
Novotel Brighton Beach, Sydney • 10th August 2022

Overview and Objectives


- 800 km of roads (4800 segments) with \$400m Replacement Value.
- 88% is urban, 12% Rural
- Community Expectation: Good conditioned Roads
- Budget Constraint: requires significant investment to maintain the whole network at acceptable standard.
- Overall Challenge is to ensure all roads are fit over long periods of time at a minimum lifecycle cost.
- Stabilised 302 Road Projects in the last 31 years for Poor to very Poor condition Pavements (alternative to Full Depth Reconstruction).
- Cost wise: 40 to 50% Cheaper than Full depth Reconstruction.
- Time wise: Rehabilitation project can be completed within a week.
- Innovative approach by Campbelltown City Council: PMS integrates Pavement recycling options to achieve longer term financial sustainability in its network management.

Pavement Management Strategy Development

Link Condition/Defects with

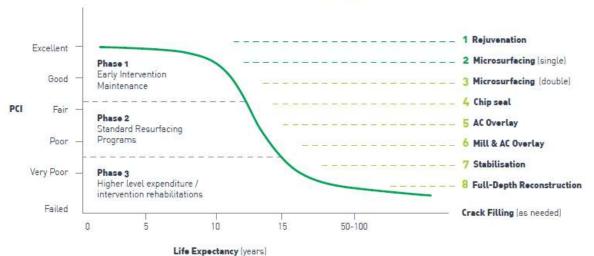

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Maintenance Applications

Rejuvenation Microsurfacing Reseal Asphalt Resurfacing Rehabilitation

Pavement Management Strategy

Treatment Selection Divided into 3 Phases

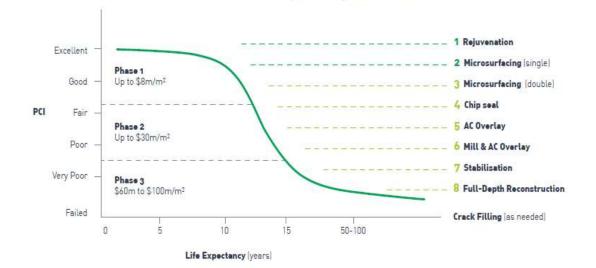

Treatment selections are broken into 3 distinct phases-

Phase1: Preservation *(early intervention maintenance)*

Phase2: Standard Resurfacing Program

Phase3: Rehabilitation (higher Level expenditure/intervention).

Pavement PCI, Life Expectancy and Treatment



Funding Strategy

Phase 1: 100% funded, cheaper and keep the good conditioned road in good condition for a long time. (allocation 20%)

Phase 2: Maximum projects in this category; Fund the worst projects first so that remaining projects do not go to Phase 3 (allocation 65%)

Phase 3: Long term Planning. Eliminate this in 5/10 years. No increase in number. Allow some funding for reactive (allocation 15%)

Pavement PCI, Life Expectancy and Treatment

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

CCC Road Rehabilitation Applications

Mill and Fill

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Pavement Rehabilitation (Phase 3 Treatment)

CAMPDELL TOWN

Treatments:

Mill & Fill, Stabilisation and Reconstruction

99% cases we use pavement Stabilisation as it is the most cost effective pavement rehabilitation treatment.

Stabilised more than 302 projects in the last 31 years.

5 steps process

Step1: Treatment selection by PMS

....

Road No 1351.00000 1430.00000 1864.00000	Block 10.0000 10.0000	Road Name WANDA PLACE	Block Name	Code	Description	Cost	
1430.00000		WANDA PLACE				0031	
	10.0000		CRONULL - END CUL	RC2	LOCAL URBAN REHABILITATION	\$52,496.00	
4964.00000	10.0000	KEIRA PLACE	JUNCTIO - END CUL	RC2	LOCAL URBAN REHABILITATION	\$50,965.00	
1004.00000	10.0000	COOLABAH PLACE	EUCALYP - END CUL	RC2	LOCAL URBAN REHABILITATION	\$49,421.00	
1916.00000	10.0000	HEREFORD PLACE	HANSENS - END CUL	RC2	LOCAL URBAN REHABILITATION	\$48,312.00	
2026.00000	10.0000	AINSLIE PLACE	KEMBLA - END CUL	RC2	LOCAL URBAN REHABILITATION	\$46,042.00	
2118.00000	30.0000	GERTRUDE ROAD	RODNEY - FIONA P	RC2	LOCAL URBAN REHABILITATION	\$136,382.00	
2239.00000	20.0000	MEMPHIS STREET	VICTORI - END (KA	RC2	LOCAL URBAN REHABILITATION	\$49,500.00	
2473.00000	10.0000	RAVENSWORTH PLACE	RIVERSI - END CUL	RC2	LOCAL URBAN REHABILITATION	\$48,510.00	
2481.00000	10.0000	BRUDENELL AVENUE	TURIMET - MAMCK	RC2	LOCAL URBAN REHABILITATION	\$133,901.00	
2492.00000	20.0000	MACQUARIE AVENUE	BANKS S - RUSSELL	RC2	LOCAL URBAN REHABILITATION	\$36,353.00	
2548.00000	80.0000	KINGSCLARE STREET	TERALBA - O'SULLI	RC2	LOCAL URBAN REHABILITATION	\$44,920.00	
2572.00000	20.0000	MEGALONG CRESCENT	NEPEAN - VALLEY	RC2	LOCAL URBAN REHABILITATION	\$126,720.00	
2584.00000	10.0000	BOTTLEBRUSH AVENUE	JACARAN - BLACKBU	RC2	LOCAL URBAN REHABILITATION	\$202,910.00	
2843.00000	10.0000	GEARY STREET	KELLICA - MENANGL	RC6	IN-SITU CEMENT STABILISATION	\$140,140.00	
2917.00000	10.0000	DON PLACE	MISSISS - END CUL	RC2	LOCAL URBAN REHABILITATION	\$18,533.00	
3024.00000	20.0000	ORCHID PLACE	END CUL - END CUL	RC2	LOCAL URBAN REHABILITATION	\$10,039.00	

\$1,304,044.00

Investigation

Step 2: Deflection Testing

Falling Weight Deflectometer

SMEC

Results

RABY	Re	DAD								Sur	vey Do	te:		20-A	ug-02	
Road Ia	r		RA	BY00	2											
From S.	tree	<i>t</i>	TH	UNDE	RBO		,									
To Stree	er			ARNS												
Chainage		Surface	Load	Mea	sured l	Deflect	ons (u	m) at dis	stence	(mm) fi	om loa	đ	E1	CBR	Beam	Curv
(m)	Lane	Temp	kPa	0	200	300	450	600	750	900	1200	1500	MPa	C%)	(mm)	(mm)
0.025	2	26.0	711	1264	907	600	465	278	155	92	63	35	366	2	1,22	0.34
0.050	1	26.0	610	668	487	325	220	146	100	77	48	7	449	6	0.80	0.24
0.075	2	26.0	761	591	364	227	159	121	99	84	55	32	458	21	0.56	0.20
0.100	1	26.0	638	915	641	444	285	174	115	83	55	33	399	4	0.99	0.29
0.125	2	26,0	770	519	375	283	225	167	130	105	70	45	912	12	0.50	0.13
0.150	1	26.0	625	588	408	281	197	138	104	80	56	37	529	10	0.67	0.20
0.175	z	26.0	663	855	559	414	267	201	140	98	61	24	522	4	0.90	0.30
0.200	1	26.0	643	548	349	233	165	120	95	78	58	42	479	15	0.61	0.21
0.225	2	26.0	279	849	607	421	252	144	94	68	46	58	175	2	2.05	0.58
0.250	1	26.0	654	492	325	213	159	111	80	63	36	25	644	11	0.55	0.18
0.275	2	26.0	558	516	340	250	181	136	106	84	52	36	501	12	0.66	0.20
0.300	1	26.0	635	519	330	225	161	113	84	66	43	23	566	11	0.59	0.20
0.325	2	26.0	466	1126	787	555	356	223	144	113	64	45	217	з	1.64	0.40
0.350	1	26.0	61-4	485	363	261	207	158	126	105	70	54	697	13	0.67	0.16
0.375	2	26.0	596	668	473	312	187	118	84	67	52	35	417	7	0.70	0,22
0.400	1	26.0	626	520	321	212	133	88	68	63	37	24	488	12	0.60	0.22
0,425	2	26.0	480	797	563	387	257	175	131	105	74	51	290	5	1.14	0.33
Overall													477	9	0.87	0.26
Stad Dev													176	5	0.43	0.12

Unconfined Compressive Strength of Compacted Stabilised Materials

Project: Woodland Road, Bradbury Client: Campbelltown City Council Address: PO Box 57, Campbelltown

Report No. 04/0706 Report Date 02/08/04

Project No.: 15314/9723A

2 of 3

Sheet To at Matheady A C1141 E1 Standard Compactive Effort

Sample No.	24A	24B	
Location	BH 24	BH 24	
Depth of Sample	0.0-0.3m	0.0-0.3m	
Type Of Additive	RSA HS1585	RSA HS1585	
Source of Additive	Hyrock	Hyrock	
% Additive added	3.0	3.0	
% Greater than 37.5mm	Nil	Nil	
% Greater than 19.0mm	Nil	NII	
Initial Curing Time	1 Hr	1 Hr	
Moisture Content as Compacted t/m3	9.0	9.0	
Dry Density as Compacted t/m3	2.08	2.08	
Density Ratio %	NA	NA	
Moisture Ratio %	NA	NA	
Type of Specimen Curing	Accelerated	Accelerated	
Specimen Curing Time	7 Days	7 Days	
Average Unconfined Compressive Strength MPa	3.5	3.5	
Remarks: Additive Com	position (85%	Slag, 15% Lime	» ~ hil-
NA - Not App	licable		Approved Signatory
Technician: LC			George Prudnyk - Laboratory Manager

Pavement Design and Construction

Step 4: Pavement Design (in-house)

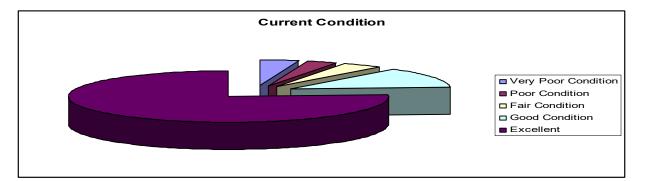
S 8	TILE .	뭪챵드릴	¥ =	∑ci maa	h. 0	99 4	
iculation of	plox						
Calcula	te damaga factors		C Calculate sale	cted results at user-	defined availables		
Рагали	tric Analysis						
dic Spect	un: En	erald Traffic					
	and the second						
nmay P	kiebilty						
Design	thickness of layer hi	writed ballow		Celoulete Cost			
erry.		1.1					
Nk	0 1	te .	Minim	m Thickness Maxi	nun Thidness	Current Thickness	COF
		iphah 200MPa				50.50	1.66-66
		emented, E+2000 MPa				317.62	196-0
) Sub_(1996 S	ubgrade CBFHS.Anso				0.10	1.66-05
efomax	x Offeria and Traffi	crulpies:					
	Use in Max CDF	Material Type		Performence Orien	0ñ		Multiplier
N	Use in Max CDF	Material Type Asphat		Shell explose orders	00		Multiplier 1.0
N	Use in Max CDF	Material Type			on Cemented materi		Multiplier 1.00 10.00 1.00

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022 Step 5: Pavement Construction

Savings Achieved from 302 Stabilisation Projects (From 1991 to 2022)

Performance Data for 300 Projects

Stabilised 302 projects in the last 31 years


The current condition of 301 Projects

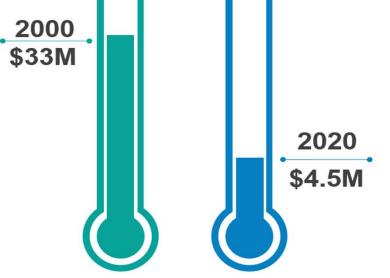
76% is still in Excellent condition

13% in Good Condition

4% in Average Condition

7% are in a Poor Condition.

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022


Achievements

Condition Improvement

Pavement Condition Index Improvement (where 0 = brand new) 0 0.5 1 1.5 2 2.5 3 3.5 2012 2013 2014 2015 2016 2017 2018 2019 2020

Backlog Reduction

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Blaxland Road Stabilisation

Subgrade stabilisation

Foam Bitumen Stabilisation existing and widening area

Moving from Linear to Circular Economy

Linear Economy Conventional Asphalt

Finite resources quarried for asphalt Energy required for mixing at asphalt plant

Construction – Excavate and remove existing material, replace with new asphalt material

Asphalt pavement requires upgrading – remove as old asphalt cannot be reused for the new pavement

Dispose unserviceable asphalt to mak way for new pavement – waste to landfill or Council stockpile Unsustainable

High amount of waste

Depletion of finite resources

Economically inefficient

Keep resources in use for as long as possible

Extract maximum value whilst in use

Lower cost

Circular Economy Foamed Asphalt

Existing pavement reached end of service life

Recycle by **Foamed Asphalt** 100% of the existing pavement material with small quantities of additives.

The engineering properties of the existing material are altered to create a technically superior pavement.