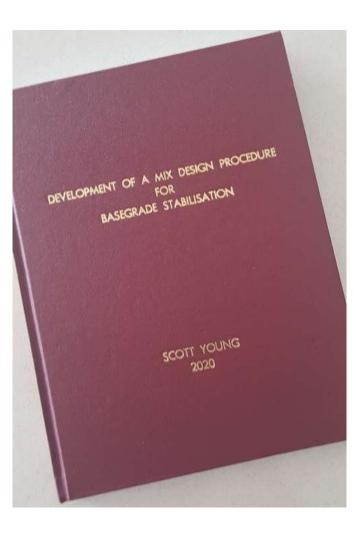
A Practical Approach to Rehabilitate Thin Existing Pavements using Basegrade Stabilisation

Scott Young

BE (Hons), MPavtTech, RPEng (Civil), RPEQ

Stabilised Pavements of Australia



Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads

Novotel Brighton Beach, Sydney • 28th July 2021

SPREAMBLE

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 28th July 2021

Aust Stab

- 1. Introduction
- 2. Defining Basegrade Stabilisation
- 3. The Research Program
- 4. Development of the Mix Design Procedure
- 5. Applications in Local Government
- 6. Summary

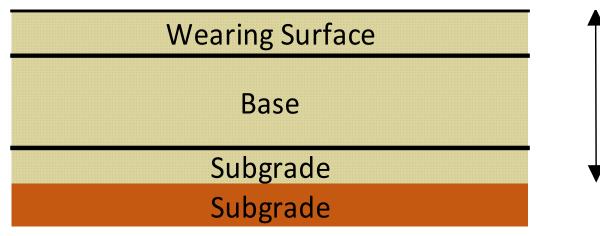
Pavement Structures

2

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 28th July 2021

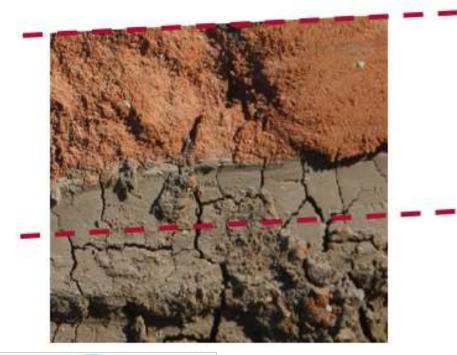
BASEGRADE STABILISATION

S.P.A


STABILISED PAVEMENTS

OF AUSTRALIA

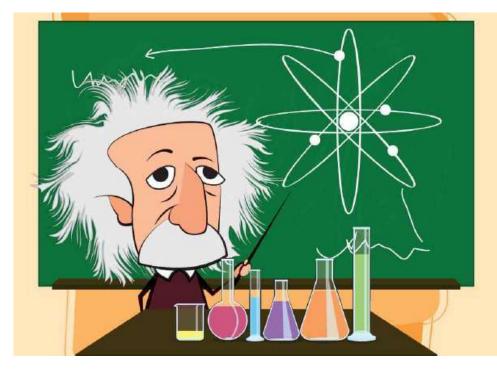
Thin Pavements


Required Depth of Stabilisation

Basegrade Stabilisation

Basegrade Stabilisation Thickness

=


Base thickness + Subgrade Thickness

B THE EXPERIMENTAL RESEARCH PROGRAM

Research Objective

To develop a mix design procedure for basegrade stabilisation treatments on local government pavement rehabilitation projects identified in lightly

trafficked environments.

Raw Materials

Raw Material Properties

Raw Material #	1	2	3	4
Property	Type 2.3 Gravel	Pittsworth Alluvial	Redlands Silt	Wallum Court Clay
Liquid Limit (%)	19.6	82.4	65.4	38.8
Plastic Limit (%)	17.6	33	37	24.6
Plasticity Index (%)	2.0	49.4	28.4	14.2
Linear Shrinkage (%)	1.4	21.4	16	3.4
Maximum Dry Density (t/m3)	2.18	1.34	1.35	1.68
Optimum Moisture Content (%)	8.5	29.5	38	21
4 Day Soaked CBR (%)	70	1.5	2.5	8
Swell (%)	0.0	0.8	0.3	1.9

Research Pavement Types

Pavement Material		Type 2.3 Gravel RM1							
Subgrade Material	Pitts	RM2 worth All	uvial	R	RM3 edlands S	Silt	Wallu	_{RM4} um Court	Clay
Gravel / Subgrade Proportions (%)	80/20	65/35	50/50	80/20	65/35	50/50	80/20	65/35	50/50
Pavement Type	PT1	PT2	PT3	PT4	PT5	PT6	PT7	PT8	РТ9

Test Phase 1 & 2: UNTREATED

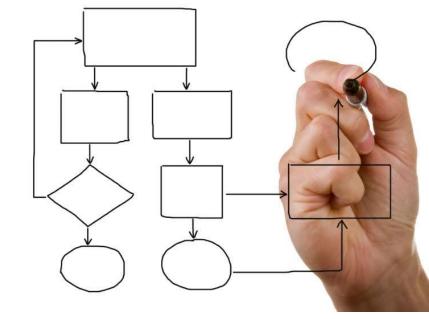
UNTREATED MATERIALS										
Phase 1 Testing	Phase 1 Tests		Phase 2 Testing							
Raw Materials		Pavement Type	Base 1	Subgrade 1						
		PT1	80%	20%						
Type 2.3 Gravel		PT2	65%	35%						
	PSD, Atterbergs,	PT3	50%	50%						
		Pavement Type	Base 1	Subgrade 2	PSD, Atterbergs,					
Pittsworth Alluvial		PT4	80%	20%	MDR, CBR					
	MDR, CBR	PT5	65%	35%	on all Pavement					
Dodlanda Silt		PT6	50%	50%	Types					
Redlands Silt	-	Pavement Type	Base 1	Subgrade 3						
Wallum Court Clay		PT7	80%	20%						
		PT8	65%	35%						
		PT9	50%	50%						

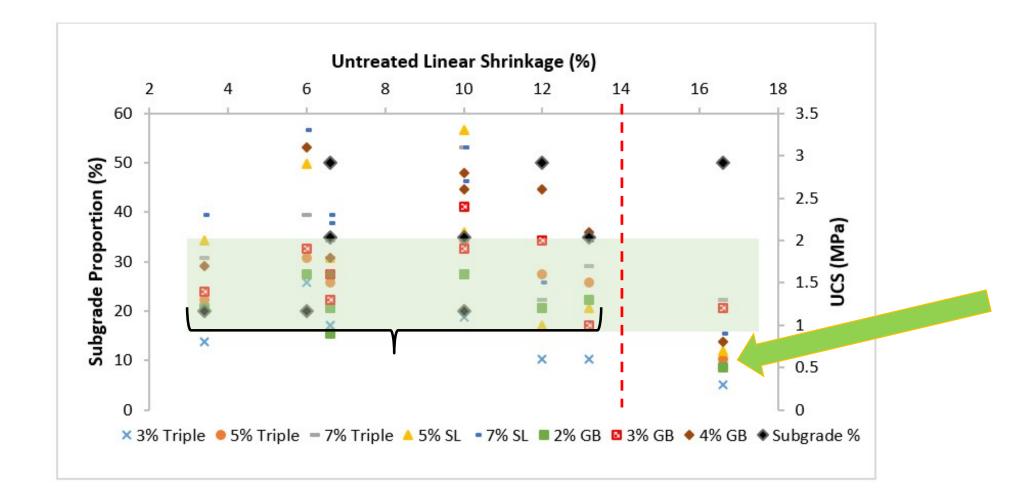
 \sum

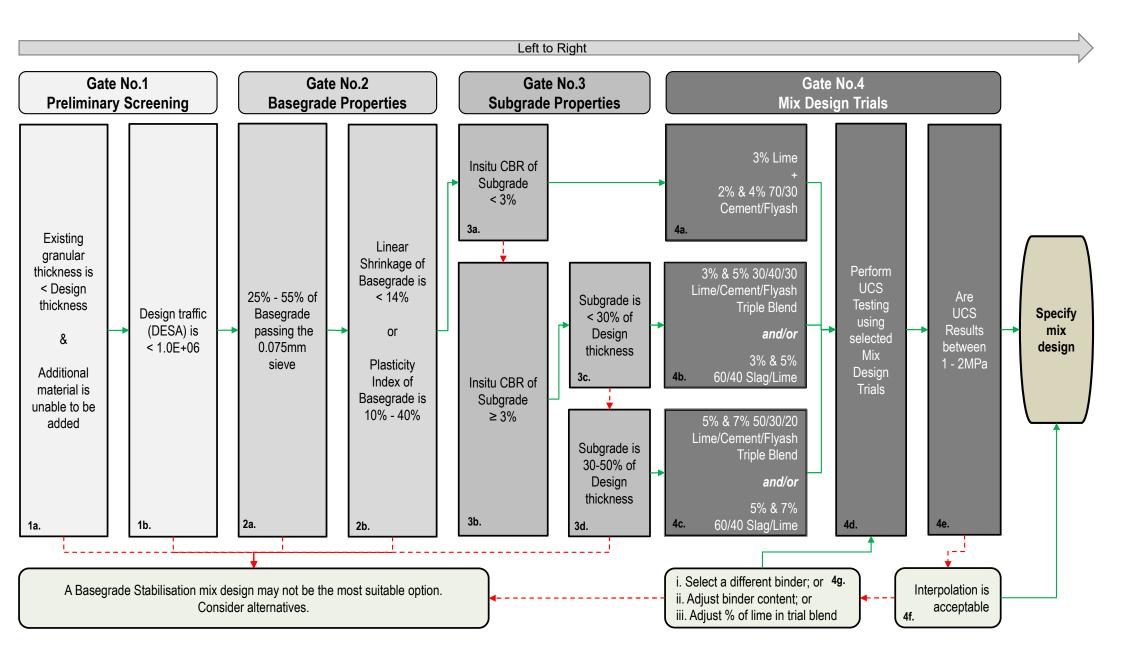
Srest Phase 3 & 4: TREATED

	TREATED MATERIALS											
	Phase 3a Testing			Phase 3	b Testing	Phase 3 Tests	Phase 4 Testing			Phase 4 Tests		
	Lime/Cem	ent/Flyash T	riple Blend	60/40 S	lag/Lime		Day 1: Lime					
Pavement Type	3%	5%	7%	5%	7%		Day 2:	Day 2: 70/30 GB Cement				
PT1	30/40/30	30/40/30	30/40/30			UCS on all	20/ lime/	20/ lime/	20/ lime/	UCS on all		
PT2	40/40/20	40/40/20	40/40/20	60/40	60/40	samples	3% lime/			samples		
PT3	50/30/20	50/30/20	50/30/20							2% GB	3% GB	4% GB
Pavement Type	Lime/Cem	ent/Flyash T	riple Blend	60/40 Slag/Lime		MDR	Day 1 Lime / Day 2 Cement			MDR		
PT4	30/40/30	30/40/30	30/40/30			Atterbergs	3% lime/	3% lime/	3% lime/	Atterbergs		
PT5	40/40/20	40/40/20	40/40/20	60/40	60/40	on Pavement	2% GB	3% GB	4% GB	on Pavement		
PT6	50/30/20	50/30/20	50/30/20			Types PT2,	2% GB 3	570 GB	4% GB	Types PT2,		
Pavement Type	Lime/Cem	ent/Flyash T	riple Blend	60/40 S	lag/Lime	PT5, PT8	Day 1 Lime / Day 2 Cement			PT5, PT8		
PT7	30/40/30	30/40/30	30/40/30			(65/35 blend)	20/ lime/	20/ lime/	3% lime/	(65/35 blend)		
PT8	40/40/20	40/40/20	40/40/20	60/40	60/40		3% lime/ 2% GB	3% lime/ 3% GB	4% GB			
PT9	50/30/20	50/30/20	50/30/20				270 GB	5% GB	4% 08			
	1 Day Process							2 Da	y Process			

Summary of UCS Results


All in			1.5			2.0			1.5			
MPa	Averages	2.3	1.4	0.8	2.5	2.0	1.5	1.6	1.6	1.5	, ,	
		PT1	PT2	PT3	PT4	PT5	PT6	PT7	PT8	РТ9	Avera	ages
3% Trip	ole Blend	1.5	0.6	0.3	1.9	1.1	0.6	0.8	1.0	1.0	1.0	
5% Trip	ole Blend	1.8	1.5	0.6	2.0	1.9	1.6	1.3	1.5	1.3	1.5	1.5
7% Trip	ole Blend	2.3	1.7	1.3	3.1	1.9	1.3	1.8	2.0	1.8	1.9	
5% 60/	5% 60/40 Slag/Lime		1.2	0.7	3.3	2.1	1.0	2.0	1.8	1.3	1.8	2.0
7% 60/	40 Slag/Lime	3.3	2.0	0.9	3.1	2.7	1.5	2.3	2.3	2.2	2.3	2.0
3% Lim	ne + 2% 70/30 GB	1.6	1.3	0.5	1.6	1.6	1.2	1.2	0.9	1.2	1.2	
3% Lim	ne + 3% 70/30 GB	1.9	1.6	1.2	2.4	1.9	2.0	1.4	1.3	1.6	1.6	1.7
3% Lim	ne + 4% 70/30 GB	3.1	2.1	0.8	2.8	2.6	2.6	1.7	1.8	1.6	2.1	
Subgra	ade %	20	35	50	20	35	50	20	35	50		


DEVELOPMENT OF THE MIX DESIGN PROCEDURE


UCS v Linear Shrinkage

The Mix Design Procedure

Ser Guidance

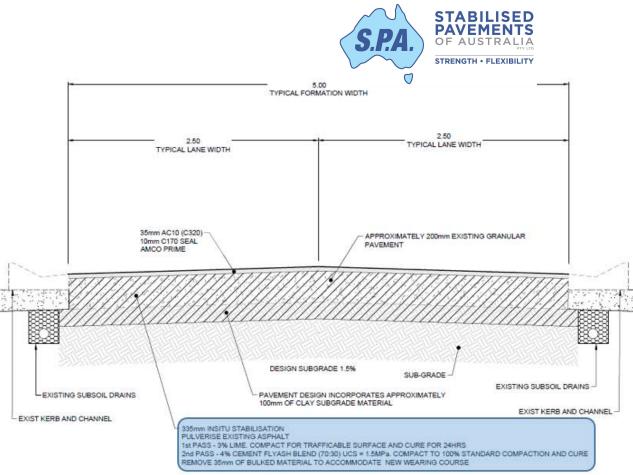
Specific Notes:

- 1a. Existing granular thickness can include bituminous wearing surface where no level restrictions exist. Additional material refers to a review of the opportunity to raise the level of the existing pavement with another suitable unbound material (eg. a granular overlay).
- 1b. Engineering judgement is required on a case by case basis to assess the heavy vehicle traffic spectrum for the site against the specific basegrade pavement being considered.

25% - 55% of Basegrade passing the 0.075mm sieve 2a.

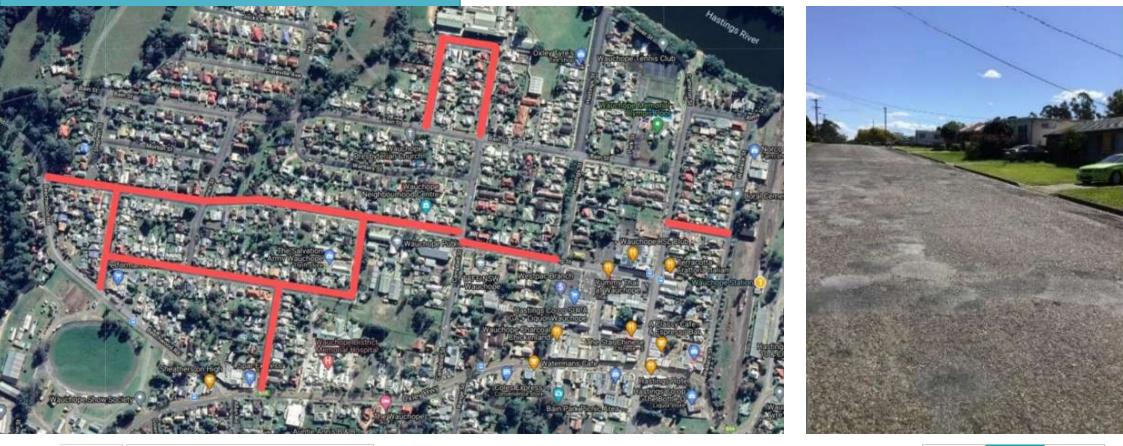
5 APPLICATIONS IN LOCAL GOVERNMENT

Sunshine Coast Council



Rehab Solution

TYPICAL CROSS SECTION - PAVEMENT TYPE A

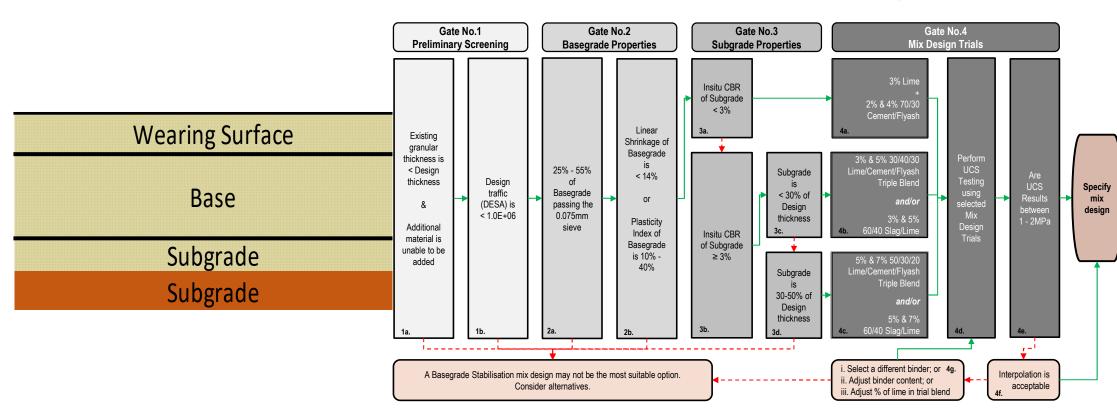


Port Macquarie Hastings Council, NSW

I just need the main ideas

Sr Evolution

Conventional Stabilisation


Wearing Surface
Base
Subbase
Subgrade

			<u></u>				
Particle size	More than	25% passing 7	5 µm sieve	Less than	25% passing 7	5 µm sieve	
Plasticity index (PI)	PI <u>≤</u> 10				PI <u>≤</u> 10	PI > 10	
Binder type							
Cement and cementitious blends ^(1,3)	Usually suitable	Doubtful	Usually not suitable	Usually suitable	Guide to Pavement Te Stabilised Materials	chnology Part 4D	Austroa
Lime	Doubtful	Usually suitable	Usually suitable	Usually not suitable			
Bitumen	Doubtful	Doubtful	Usually not suitable	Usually suitable			
Bitumen/ lime blends	Usually suitable	Doubtful	Usually not suitable	Usually suitable			2
Granular	Usually suitable	Usually not suitable	Usually not suitable	Usually suitabl e	u AA		
Dry powder polymers	Usually suitable	Usually suitable	Usually unsuitable	Usually suitable			L
Other proprietary chemical products ⁽²⁾	Usually not suitable	Usually suitable	Usually suitable	Usually not suitable			F

Basegrade Stabilisation

