Sustainability Assessment Tool (SAT)

Brook Hall, Principal Transport Economist

Life Cycle & Economic Analysis Portfolio Leader

Australian Road Research Board (ARRB)

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads

Nevetal Drighter Death Scheever 10th August 2022

Novotel Brighton Beach, Sydney • 10th August 2022

Collaborative Research & Development

Background

- NACOE and WARRIP research programs delivered innovations in pavement materials and technologies
- Poor uptake by industry
- Foundational research project (for NACOE) indicated pavement innovations provide both economic and environmental wins
- Sustainability could be one driver to increase uptake

Purpose

- Develop and release an online lifecycle analysis tool for the comparative assessment of pavement options
- Enhance the adoption of pavement technology research and innovation

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Scope

Cradle-to-grave lifecycle assessment

Extraction and production of materials

Construction

Maintenance

Operations (including use phase)

End of life

(emissions and

waste outputs)

Material haulage

Key features

- User-friendly web-based interface
- Tailored, flexible and customisable
- In-built guidance tips

Key features

- Build your own pavement layer by layer
 - Constituent materials (85+)
 - Pavement products (~120)
- Construction & maintenance
- Built-in/customisable maintenance data, incl. concrete placement and stabilisation
- Use phase
 - Built-in fuel use models.
 - Sensitive to traffic, alignment & deterioration

Stabilisation products and processes

Construction Process:

+ Custom Process

Manufacturing Dracoss

In-situ Stabilisation (Bitumen)

In-situ Stabilisation (Bitumen) em based on diesel usage. Processes (57l/hr), one spreader truck (12.4 (12.47l/hr), one water truck (12.4 and one Class 110 grader (17l/hr (3.19l/m3) Assumptions: • Ongoi (10hrs/day) and no significant co Excludes: • Emissions or by produ Mobilisation and demobilisation pump/portable water tower, gen material to site.

Wanulacturing Process.
Stabilised Material - Manufacture - Cement
SELECT
Concrete - Manufacture
Hot Mix Asphalt - Manufacture
Stabilised Material - Manufacture - Bitumen
Stabilised Material - Manufacture - Cement
Warm Mix Asphalt - Manufacture
transportation • energy and plant use. Wastewater and
some solid wastes are considered. Assumptions: •
Concrete production is based on ready-mix concrete
production in Australia • Amount of cement is adopted a
per the Green Building Council of Australia (GBCA).
Exclusions: • Administration, Site office, water
pump/portable water tower, generators, etc. • Dust •
Transporting concrete to the site.

	Data Management - Product Library			
+ Custom Process	Show 10 + entries	Search: stab	×	
	Description		11	
nent 🗸	MRTS07A			
	Insitu stab using Lime (Unbound granular, modified granular and stabilised)		C i	
	 Hydrated Lime (6%) In-Situ Material (94%) 			
ment	MRTS07B			
	Insitu stab using cement (Unbound granular, modified granular and stabilised)		C i	
astewater and options: •	 Type GP Cement (1.5%) Fly Ash (1%) In-Situ Material (97.5%) 			
ent is adopted as	MRTS07C			
ia (GBCA).	Insitu stab using foamed bitumen (Unbound granular, modified granular and stabilised)		C î	
vater etc. • Dust •	 C170 (3%) Hydrated Lime (1.5%) In-Situ Material (95.5%) 			

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Concrete pavement products and maintenance

MRTS40	
Jointed unreinforced concrete base (PCP) (Asphalt or Concrete - 2000 kg/m³)	C
Type GP Cement (13%)	
 Fly Ash (4%) 	
Crushed Rock (55.3%)	
Natural Sand (27.7%)	
Continuously reinforced concrete base (CRCP) (Asphalt or Concrete - 2200 kg/m ³)	C
Type GP Cement (13%)	
 Fly Ash (4%) 	
Crushed Rock (54%)	
Natural Sand (27%) Steel (Rep) (2%)	
Jointed reinforced concrete base (JRCP) (Asphalt or Concrete - 2150 kg/m ³)	(2) B
- Time CD Comment (13%)	
Type GP Cement (15%) Elv Ach (4%)	
Crushed Rock (54.7%)	
 Natural Sand (27.3%) 	
• Steel (Reo) (1%)	
Steel fibre reinforced concrete base (SFCP) (Asphalt or Concrete - 2200 kg/m ³)	C 🕯
Type GP Cement (13%)	
• Fly Ash (4%)	
Crushed Rock (53.3%)	
Natural Sand (26.7%)	
Steel fibre (3%)	

Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Australian Pavement Recycling and Stabilisation Conference

Capability

Compare innovative pavement design options

Australian Pavement Recycling and Stabilisation Conference Pavement Recycling for Sustainable Roads Novotel Brighton Beach, Sydney • 10th August 2022

Lifecycle assessment outputs

Sustainability

- Lifecycle GHG emissions (tonnes CO₂-e)
- Other air-pollutants
- Energy use
- Water use
- Material quantities (tonnes)
- IS Enviropoints

Lifecycle assessment outputs

Economic

- Costs (\$ Net Present Value)
- Calculates the whole-of-life economics of pavement options
- Sensitivity analyses
- Costings based on materials, construction methodology, maintenance, residual asset value, carbon price.

Key messages

- Developed by TMR, Main Roads WA and ARRB to the benefit of industry to:
- Support adoption of new technologies and materials
- Reduce GHG emissions & other environmental impacts
- Achieve economic sustainability goals
- Improve their long-term investment decision-making
- Evaluate new and innovative pavement designs consistently and reliably.

Summary

The SAT is:

- Unlike any pavement assessment tool currently being used in the industry right now/ competitor products lack the precision and flexibility
- Assesses the environmental impacts and benefits of innovative pavement designs in a consistent and user-friendly way
- Aligned with Infrastructure Sustainability Council (ISC)'s ratings process and requirements

nacoe.com.au

warrip.com.au