Category 3: Excellence in Sustainability

Merimbula Airport Foamed Bitumen Stabilisation – Symal Infrastructure

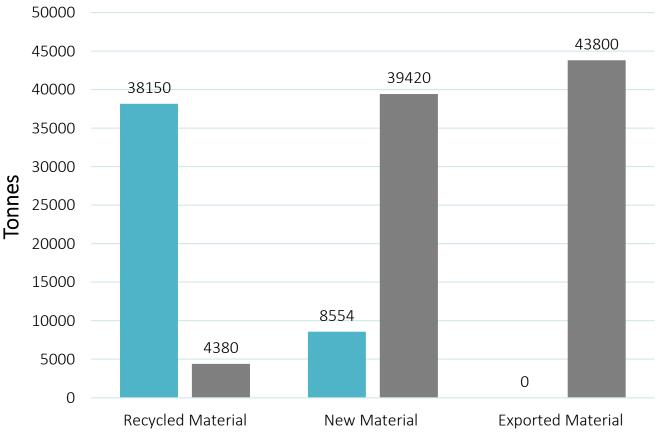
Chris Cleaton, Regional Manager – Victoria Stabilised Pavements of Australia

2022 AustStab Awards of Excellence

Project Details

- Location: Merimbula Airport, NSW (South Coast NSW) within Bega Valley Shire Council – this airport receives up to 3,000 aircraft movements annually
- Scope: Foamed Bitumen Stabilisation
- Area: 73,000m²
- Depth of recycling treatment: 260mm
- Supplementary additive: 1% 50/50 Lime/Flyash
- Primary additive: 2.5% C170 bitumen
- Wearing course: 14/10 double/double sprayed seal
- Recycling of existing pavement materials and a thin overlay of DGB20 for levelling surfaces
- Client: Bega Valley Shire Council
 Principal Contractor: Symal Infrastructure
 Stabilisation Contractor: Stabilised Pavements of Australia Pty Ltd

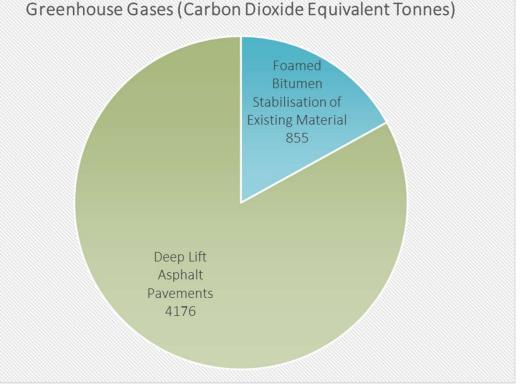
Stabilisation of the existing materials for sustainable airport pavements – A more sustainable alternative to deep-lift asphalt pavements



Proudly sponsored by **CATERPILLAR**[®]

Environmental Outcomes

- 260mm recycling using Foamed Bitumen compared with 250mm asphalt....
- Greenhouse gas emissions calculated using SPA's Environmental Calculator
- Deep lift asphalt option includes 10% RAP as recycled materials
- New materials include anything imported to site, such as binders, asphalt, sprayed seal, DGB20
- Exported materials include anything carted away from site – for deep lift asphalt, this is all the existing pavement that foamed bitumen stabilisation was able to recycle and regenerate into a new pavement



■ Foamed Bitumen Stabilisation of Existing Material ■ Deep Lift Asphalt Pavements

Environmental Outcomes

- 260mm recycling using Foamed Bitumen compared with 250mm asphalt....
- Greenhouse gas emissions calculated using SPA's Environmental Calculator
- 80% reduction in emissions by pavement recycling using foamed bitumen stabilisation
- External sources used for emission factors include:
 - Dilger, A., Riley, C., Young, S., Bengtsson, J. & Kneppers, B., C 2013, 'construction materials emission factors', *Greenhouse Gas Assessment Workbook for Road Projects*, ICE V2.0 2011, and Cement Australia

- Manufacturing of materials
- Construction activities
- Fuel consumption for truck movements

Social Outcomes

- Extremely efficient productivity
- A foamed bitumen stabilised pavement has given council the option for future upgrades to larger planes, they only need to apply AC wearing course on top
- 1,200 t of bitumen used in 15 shifts averaging 4 loads per day. Total program 18 shifts including the stand down days due to lack of supply issues
- Best production day was 6,000m² of supplementary binder mixed in and 8,100m² of Foamed Bitumen stabilisation with compaction to levels
- The project had its challenges, with the program hampered by binder supply issues lack of transport arising during the project. However, the team rallied and only 3 days were added to the program

Cost Outcomes

Stabilisation was approximately \$6.3M less expensive than asphalt

Approximately **70% cost savings**

Savings for the client and spread funds further across the pavement network

Quality

- Photo shows recycled foamed bitumen stabilised pavement undergoing final compaction prior to seal
- High quality outcomes and testing undertaken to verify results
- The project achieved conforming modulus and compaction results

Principal Contractor Insight

 This project was the first stabilisation project for Symal Infrastructure Project Engineer, Alex Warren. Below are some insights shared by Alex after the completion of the project:

"Through an iterative mix design process, the stabilisation design was reduced by 0.5% bitumen and 0.5% lime by mass, and replaced with 0.5% of fly ash, which unlike the other two components is a waste material produced as a by-product of coal combustion." – Alex Warren, Project Engineer, Symal Infrastructure

"The entire existing pavement and seal was able to be reused in the recycled pavement at Merimbula Airport, which meant that only a minimal amount of material had to be imported to build the pavement to the new levels. Trimmings from the pavement re-shaping works were used to build a new runway shoulder and any excess material was reused in the new taxiways being constructed." – Alex Warren, Project Engineer, Symal Infrastructure

Further Points of Interest

- First job completed under a new foamed bitumen airport specification
- Foamed bitumen was adopted due to high water table and level constraints due to flooding
- Granular material was a long haul away from the job there was a need to reduce the amount of material being delivered to site
- A foamed bitumen stabilised pavement has given council the option for future upgrades to larger planes, they only need to apply AC wearing course on top
- A large amount of testing was done to refine % of additives for the job
- The use of 50:50 hydrated lime/flyash provided further environmental benefits, by partial use of flyash, which is a recycled manufacturing by-product

Thank you to all involved in making this iconic and sustainable project possible – to see a short video, visit here: www.linkedin.com/feed/update/urn:li:activity:6907189964245737472

