Category 4: Excellence in Pavement Recycling and Stabilisation in Local Government

Pavement Recycling in Campbelltown City Council

Mahbub Hossain *BE(Civil), MSc (Engineering), MIEA(Aust)* Campbelltown City Council

2021 AustStab Awards of Excellence

Background

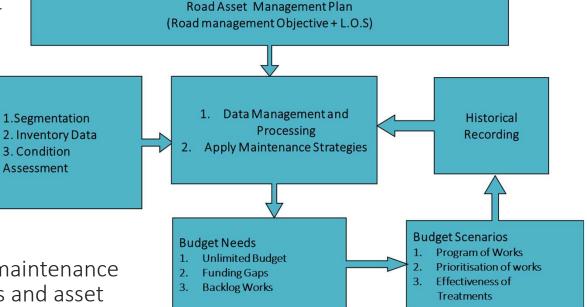
Campbelltown City Council has 790 km of road infrastructure assets with a replacement cost of approximately \$400 million.

The rapid growth of Campbelltown City Council from 25,000 residents in 1966 to more than 170,000 today has required a significant investment in infrastructure including the road network to service the ever growing residential, commercial and industrial estates.

Due to increased financial pressure to maintain the road network in good condition, Campbelltown City Council has developed and adopted a sustainable pavement management strategy that optimizes the budget's capacity and also meets the local community's expectations for good quality and safe roads.

As per Council's internationally recognized pavement management strategy, recycling and reuse of existing pavement materials by insitu stabilisation is the main treatment utilized by Campbelltown Council as a way to upgrade the structural capacity, shape and ride quality of poor to very poor conditioned road sections. It enabled Council to upgrade existing roads without the removal of any existing pavement materials.

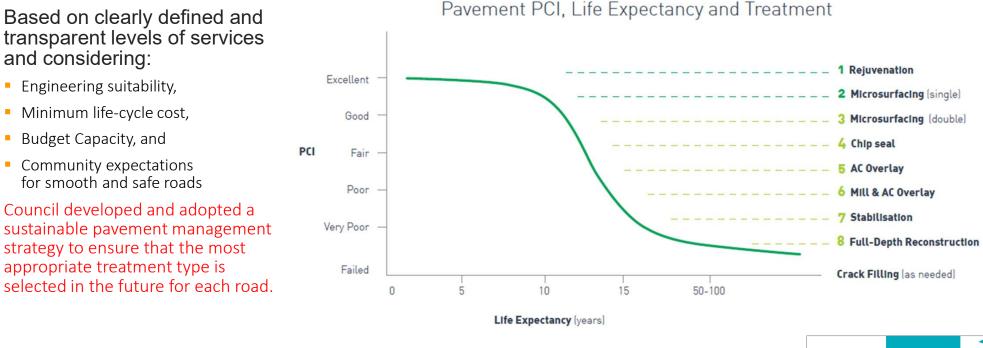
Between 1991 and 2021, Campbelltown City Council has successfully completed 300 insitu stabilisation road projects to provide the community with sustainable outcomes for the management of its road network.


Overview and Objectives

- 790 km of roads (4800 segments) with \$400M Replacement Value
- 88% is urban, 12% rural
- Community Expectation: Good conditioned roads
- Budget Constraint: Requires significant investment to maintain the whole network at acceptable standard
- Overall Challenge: To ensure all roads are fit over long periods of time at a minimum lifecycle cost
- Stabilised 300 Road Projects in the last 30 years for Poor to Very Poor condition pavements (as an alternative to Full Depth Reconstruction)
- Cost wise: 60% cheaper than Full Depth Reconstruction
- Time wise: Rehabilitation project can be completed within a week
- Innovative approach by Campbelltown City Council: PMS integrates pavement recycling options to achieve longer term financial sustainability in its network management

Campbelltown City Council's Pavement Management Process

- Campbelltown's pavement management process flows through the Council's Pavement Management System (PMS)
- The flowchart shows how the PMS draws upon data such as budget constraints, condition assessments of the network, treatment selections and suitability and historical recording in generating effective and prioritised works programs
- The PMS assists with future modelling, maintenance application choices, intervention triggers and asset budget modelling for whole-of-life-cycle costing
- Innovation by Campbelltown CC has seen the PMS integrate pavement stabilisation options to achieve longer term financial sustainability in its network management

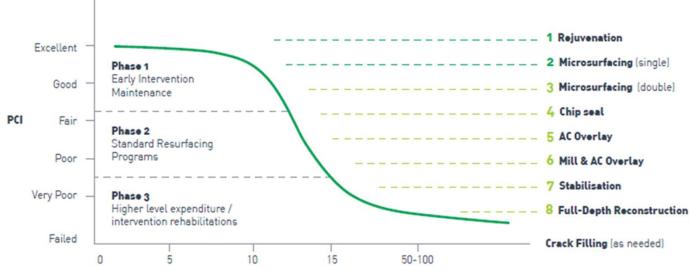

Pavement Management Strategy

A variety of failure modes or intervention triggers are assessed as part of the strategy to link life cycle to whole of life extension. Treatment selection can then be employed based on pavement requirements addressing and improving the PCI (Pavement Condition Index).

Campbelltown selects and uses a broad range of treatments based on PCI and life extensions outcomes.

Critical to treatment success is the failure mode being addressed and the life extensions realized.

PCI 0: New, PCI 1: Very Good, PCI 2: Good, PCI 3: Average, PCI 4: Poor, PCI 5: Very Poor, and PCI 6: End of Life


Treatment Selection Divided into 3 Phases

Phase1: Preservation (early intervention maintenance)

Treatment selections are broken into three distinct phases – Preservation, Resurfacing and Rehabilitation with budget target allocations for each phase.

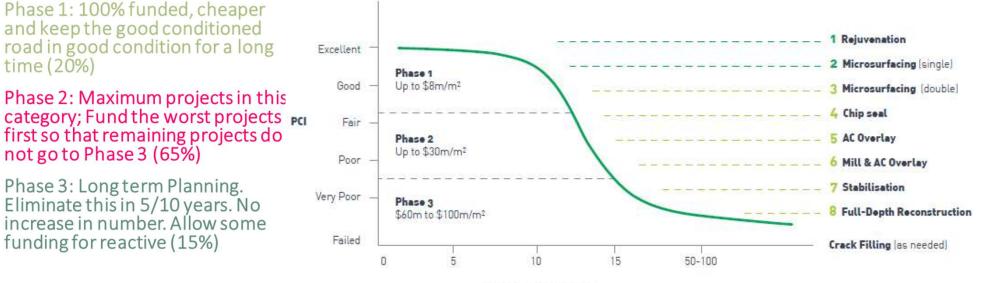
Phase2: Standard Resurfacing Program

Phase3: Rehabilitation (higher Level expenditure/intervention).

Pavement PCI, Life Expectancy and Treatment

Life Expectancy (years)

Proudly sponsored by **CATERPILLAR®**



Pavement Recycling and Stabilisation Association

Funding Strategy

With the help of Finance team, the asset section has also developed a funding strategy of all three phases as follows:

- Phase 1: 100% funded since treatments in Phase 1 are cost effective proactive maintenance and aimed to keep the good conditioned road in good condition for a long time (Budget allocation 20%)
- Phase 2: Based on PCI, most of the Council's road renewal backlogs are in this phase. Council strategy is to fund the worst projects so that remaining projects do not go to Phase 3 (Budget allocation 65%)
- Phase 3: Based on current PCI, a small number of projects are only in this phase. Council decided to eliminate these in 5 to10 years. Project selections are based on asset risk score, cost benefit analysis, minimizing road user and future maintenance costs (Budget allocation 15%)

Pavement PCI, Life Expectancy and Treatment

Life Expectancy (years)

Pavement Rehabilitation – Phase 3 Treatment

Sites exhibiting the lowest PCI are targeted and rehabilitated where required with full depth bitumen foam / cement or lime insitu stabilisation. This process allows for full pavement rehabilitation and once completed allows a new life cycle to commence. Strategies of pavement maintenance are included in life cycle modelling with an aim that sites requiring full rehabilitation are a decreasing component of annual expenditure.

- Rehabilitation treatments are listed on the left in the next slide rehabilitation is a 5 step process
- Rehabilitation treatment is selected by PMS based on condition, service levels, etc. as shown in the table on the next slide
- Pavement stabilisation from project initiation to construction is a 5 step process:
 - Step 1: Treatment selection by PMS modelling
 - Step 2: Deflection test to verify if there is any other way to Pavement Rehabilitation
 - Step 3: Geotechnical Investigation for bore-hole details, Subgrade CBR, Sieve Analysis, Plasticity and UCS tests
 - Step 4: Pavement design by CIRCLY model
 - Step 5: Pavement construction / stabilisation

Pavement Rehabilitation – Phase 3 Treatment

Treatments:

Mill & Fill, Stabilisation and Reconstruction

99% cases we use pavement Stabilisation as it is the most cost effective pavement rehabilitation treatment.

Stabilised more than 300 projects in the last 30 years.

5 steps process

Step1: Treatment selection by PMS

Scenari	o: 13	2017-18 works program			Works program for :	2018 # 1	BUDGET 15,000,000.00
Sub networ	k: SUB B	ACKLOG SECTION	IS WITH UNACCEPTABLE PCI		Optimisation method :	Maximise Network PCI	
Rule Bas	e: TREAT	RULEBAS	E FOR RECONSTRUCTION				
Road No	Block	Road Name	Block Name	Code	Description	Cost	
1351.00000	10.0000	WANDA PLACE	CRONULL - END CUL	RC2	LOCAL URBAN REHABILITATION	\$52,496.00	
1430.00000	10.0000	KEIRA PLACE	JUNCTIO - END CUL	RC2	LOCAL URBAN REHABILITATION	\$50,965.00	
1864.00000	10,0000	COOLABAH PLACE	EUCALYP - END CUL	RC2	LOCAL URBAN REHABILITATION	\$49,421.00	
1916.00000	10.0000	HEREFORD PLACE	HANSENS - END CUL	RC2	LOCAL URBAN REHABILITATION	\$48,312.00	
2026.00000	10.0000	AINSUE PLACE	KEMBLA - END QUL	RC2	LOCAL URBAN REHABILITATION	\$46,042.00	
2118.00000	30,0000	GERTRUDE ROAD	RODNEY - FIONA P	RC2	LOCAL URBAN REHABILITATION	\$136,382.00	
2239.00000	20.0000	MEMPHIS STREET	VICTORI - END (KA	RC2	LOCAL URBAN REHABILITATION	\$49,500.00	
2473.00000	10.0000	RAVENSWORTH PLACE	RIVERSI - END CUL	RC2	LOCAL URBAN REHABILITATION	\$48,510.00	
2481.00000	10.0000	BRUDENELL AVENUE	TURIMET - MAWCK	RC2	LOCAL URBAN REHABILITATION	\$133,901.00	
2492.00000	20,0000	MACQUARIE AVENUE	BANKS S - RUSSELL	RC2	LOCAL URBAN REHABILITATION	\$36,353.00	
2548.00000	80,0000	KINGSCLARE STREET	TERALBA - O'SULLI	RC2	LOCAL URBAN REHABILITATION	\$44,920.00	
2572.00000	20,0000	MEGALONG CRESCENT	NEPEAN - VALLEY	RC2	LOCAL URBAN REHABILITATION	\$126,720.00	
2584,00000	10,0000	BOTTLEBRUSH AVENUE	JACARAN - BLACKBU	RC2	LOCAL URBAN REHABILITATION	\$202,910.00	
2843.00000	10.0000	GEARY STREET	KELLICA - MENANGL	ROS	IN-SITU CEMENT STABILISATION	\$140,140.00	
2917,00000	10,0000	DON PLACE	MISSISS - END CUL	RC2	LOCAL URBAN REHABILITATION	\$18,533.00	
3024,00000	20.0000	ORCHID PLACE	END CUL - END CUL	RC2	LOCAL URBAN REHABILITATION	\$10,039.00	
3752.00000	50,0000	GLENQUARIE CENTRE SERVICE	GLENQUA - BLOCK 2	RC2	LOCAL URBAN REHABILITATION	\$108,900.00	

Investigation

- Step 2: Left hand side: Falling Weight Deflectometer test is carried out for all selected pavement rehabilitation candidates first to determine if there is any other way to carry out rehabilitation
- Step 3: Right hand side: Geotechnical investigation is carried out to check the borehole log, CBR, Particle Size Distribution, Plasticity Limit and UCS, etc.

Falling Weight Deflectometer Results SMEC RABY ROAD					r _4	SERVICES [®] ACN 002 245 329 Survey Date: 20-Aug-02							Project: Woodiand Road, Bradbury Client: Campbelltown City Council Address: PO Box 57, Campbelltown		rength of Compacted Stabilised Mate Project No.: 15314/9723A Report No. 04/0706 Report Date 02/08/04 Sheet 2 of 3 Street Street St		ted Laboratory r 2750					
Road Id				3Y00:													Sample No.	24A	24B			
From Si	reet				RBO	LTRD	>										Location	BH 24	BH 24			
To Stree	r		KEA	RNS	RD												Depth of Sample	0.0-0.3m	0.0-0.3m			
Chainage (m) l		Temp	Load kPa	Mead	oured L	Deflect	ions (u	m) at dia	750	(mm) fr 900	om loa 1200	d 1500	E1 MPa	CBR	Beam (mm)	Curv (mm)	Type Of Additive	RSA HS1585	RSA HS1585			
0.025	2	26.0		1264	907	600	465	278	165	92	63	35	366	2	1.22	0.34	Source of Additive	Hyrock	Hyrock			
0.050	1	26.0	610	668	487	325	220	146	100	77	48	7	449	6	0.80	0.24	% Additive added	3.0	3.0			
0.075	2	26.0 26.0	761	591 915	364 641	227	159 285	121	909 115	84 83	55	32	458	21	0.56	0.20	% Greater than 37.5mm	Nil	Nil			
0.125	2	26.0	770	519	376	283	225	167	130	105	70	48	912	12	0.50	0.13	% Greater than 19.0mm	Nil	NII			
0.150	1	26.0	625	588	408	281	197	138	104	80	56	37	529	10	0.67	0.20			1 Hr			
0.175	z	26.0	663	855	559	414	267	201	140	96	61	24	522	-4	0.90	0.30	Initial Curing Time	1 Hr				
0.200	1	26.0	643	548	349	233	166	120	95	78	58	42	479	15	0.61	0.21	Moisture Content as Compacted t/m3	9.0	9.0			
0.225	2	26.0	279	849 492	607 325	421	252	144	94 80	65	46	58 25	175	2	2.05	0.58	Dry Density as Compacted t/m3	2.08	2.08			
0.275	2	26.0	558	516	340	250	181	136	106	84	52	36	501	12	0.66	0.20	Density Ratio %	NA	NA			
0.300	1	26.0	635	519	330	225	161	113	84	68	-43	23	566	11	0.59	0.20	Moisture Ratio %	NA	NA			
0.325	2	26.0		1126	787	261	356	223	144	113	64	45	217	3	1.64	0.49	Type of Specimen Curing	Accelerated	Accelerated			
0.350	1	26.0	61-4 506	-485 668	473	312	207 187	158 118	126	105 67	70 62	54 35	607 417	13	0.57	0.15						
	2	26.0	626	520	321	212	133	88	66	63	37	24	488	12	0.60	0.22	Specimen Curing Time	7 Days	7 Days			
0.375												~~~		1.45	5.66		Average Unconfined	3.5	3.5	1		

Investigation

- Step 4: Left hand side: Pavement design is done in-house by using CIRCLY model
- Step 5: Right hand side: Pavement construction by selected contractor (Downer, Stabilised Pavements of Australia, Fulton Hogan or Roadworx)

	Bradysis Options H			
0 🧉	N	≝፼↓⊒፼≌≆	🖬 Σa 🔤 📐 🖉 🚳 🛃	
	in set a			
	ion option:	- 000	ulate selected results at user-defined 2-values	
	iculate damage tecto	a 1.04	ADE SERVIDU REVIS D'ADE VERVEU CYDNES	
[Pa	remetric Analysis			
Traffic S	pectum	Enversid Traffic		¥
	dama			_
Sunna	y Pelability			
FDe	sign frickness of leye	r highlighted below	Calculate Cost	
	No D	Tée	Mnimum Thickness Maximum Thickness Current Thickness	COF
D	1 Asph2900	Auphah 200MPa	\$151	1.0E-06
	2 Cement2000 3 Sub CBF6	Cemented E-200 MPs Subgrade (SRI-5 Anso	31742	1.9E-05
	1,500,0010	Dibgeos CorritiAnso		1492-05
J				
Perfor	nence Oriteria and Tr	ofic nullciers		
	No. Use in Mex C	OF Meterial Type	Performance Ottarion	Milple
	1 R	Asphet	Shell siphelt otherion	1.00
		Cement Stabilised	Fallque criterion for Cemented materials, E+2000MFit	10.00
-	2 9	Subgrade (Austroads 2004)	Subgrade talive criterion (Austroads, 2004)	1.00

Step 5: Pavement Construction

Proudly sponsored by **CATERPILLAR**[®]

Savings Achieved

Recycling of existing pavement materials by stabilisation is one of the main applications for Campbelltown Council's road rehabilitation processes. It enabled Council to upgrade existing roads without removal of any existing materials. Between 1991 and 2020, Campbelltown City Council successfully implemented 300 stabilisation road projects to provide sustainable outcomes for the management of its road network.

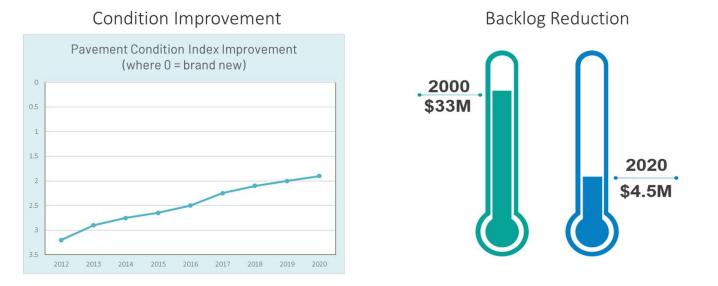
Council staff, by acting proactively and utilising their comprehensive pavement management skills and sound performance results, have implemented 300 stabilisation projects to minimise the deterioration of its road network assets and to optimise the service levels of the network assets within the constraint of available funding.

Council achieved the following benefits:

- Saved 45% direct treatment costs, at least of the next best alternatives
- Saved 250,000 tonnes of pavement materials from disposal
- Reduced construction traffic
- Reduced truck generated pollution
- Reduced damage to local roads due to trucking operations
- Saved 200,000 tonnes quarried material
- Achieved significant energy savings
- Drastically reduced construction time and lane closure

Proudly sponsored by **CATERPILLAR**[®]

Savings Achieved from 300 Stabilisation Projects (From 1991 to 2020)



Achievements

By adopting a systematic innovative approach, acting proactively and implementing a comprehensive pavement management strategy, Campbelltown City Council has managed to optimise the service levels and minimise the risk of the asset stock within budget constraints.

- Left hand side graph: The graph below details the overall improvement in the road-network PCI due to implementation of Council's comprehensive Pavement Management Strategy over the last decade
- Right hand side graph: Financial modelling comparisons on budget costing between the Council's road renewal backlogs in Financial Year 2000 and Financial Year 2020 show a trend of decreased backlog cost required to elevate the PCI of the road-network asset. The results are a direct reflection of Council's adopted innovative approach.

Proudly sponsored by **CATERPILLAR**[®]

